Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Ras mediates cell survival by regulating tuberin

Abstract

Mutational activation of Ras promotes oncogenesis by controlling cell cycle regulation and cell survival. Ras-mediated activation of both, the PI3K/AKT pathway and the MEK/ERK pathway, can trigger downregulation of the function of tuberin to block the activities of mTOR and p70S6K. Here we demonstrate that Ras-induced cell survival is accompanied by upregulation of p70S6K activity. Ras harbors the potential to negatively affect tuberin-induced apoptosis and p70S6K inactivation. These effects of Ras were found to depend on its potential to regulate the MEK/ERK pathway. Experiments using tuberin-negative fibroblasts revealed that the potential of Ras to counteract apoptosis depends on functional tuberin. Taken together, we provide evidence that the function of Ras to trigger inactivation of tuberin plays a major role in the regulation of cell survival upon mutational activation of the oncogene Ras. This is the first description of a functional interaction between the tumor suppressor tuberin and the oncogene Ras in regulating apoptosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Adachi H, Igawa M, Shina H, Urakami S, Shigeno K, Hino O . (2003). Human bladder tumors with 2-hit mutations of tumor suppressor gene TSC1 and decreased expression of p27. J Urol 170: 601–604.

    Article  CAS  PubMed  Google Scholar 

  • Arrebola F, Canizares J, Cubero MA, Crespo PV, Warley A, Fernandez-Segura E . (2005). Biphasic behavior of changes in elemental composition during staurosporine-induced apoptosis. Apoptosis 10: 1317–1331.

    Article  CAS  PubMed  Google Scholar 

  • Astrinidis A, Henske EP . (2005). Tuberous sclerosis complex: linking growth and energy signaling pathways with human disease. Oncogene 24: 7475–7481.

    Article  CAS  PubMed  Google Scholar 

  • Ballif BA, Roux PP, Gerber SA, MacKeigan JP, Blenis J, Gygi SP . (2005). Quantitative phosphorylation profiling of the ERK/p90 ribosomal S6 kinase-signaling cassette and its targets, the tuberous sclerosis tumor suppressors. Proc Natl Acad Sci USA 102: 667–672.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cox AD, Der CJ . (2003). The dark side of Ras: regulation of apoptosis. Oncogene 22: 8999–9006.

    Article  CAS  PubMed  Google Scholar 

  • Dan HC, Sun M, Yang L, Feldman RI, Sui X-M, Ou CC et al. (2002). Phosphatidylinositol 3-kinase/Akt pathway regulates tuberous sclerosis tumor suppressor complex by phosphorylation of tuberin. J Biol Chem 277: 35364–35370.

    Article  CAS  PubMed  Google Scholar 

  • Danial NN, Korsmeyer SJ . (2004). Cell death: critical control points. Cell 116: 205–219.

    Article  CAS  PubMed  Google Scholar 

  • Downward J . (2004). PI 3-kinase, Akt and cell survival. Sem Cell Dev Biol 15: 177–182.

    Article  CAS  Google Scholar 

  • Dufner A, Thomas G . (1999). Ribosomal S6 kinase signaling and the control of translation. Exp Cell Res 253: 100–109.

    Article  CAS  PubMed  Google Scholar 

  • Franke TF, Hornik CP, Segev L, Shostak GA, Sugimoto C . (2003). PI3K/Akt and apoptosis: size matters. Oncogene 22: 8983–8998.

    Article  CAS  PubMed  Google Scholar 

  • Freilinger A, Rosner M, Krupitza G, Nishino M, Lubec G, Korsmeyer SJ et al. (2006). Tuberin activates the proapoptotic molecule BAD. Oncogene 25: 6467–6479.

    Article  CAS  PubMed  Google Scholar 

  • Goncharova EA, Goncharov DA, Eszterhas AW, Hunter DS, Glassberg MK, Yeung RS et al. (2002). Tuberin regulates p70 S6 kinase activation and ribosomal protein S6 phosphorylation. A role for the TSC2 tumor suppressor gene in pulmonary lymphangioleiomyomatosis (LAM). J Biol Chem 277: 30958–30967.

    Article  CAS  PubMed  Google Scholar 

  • Harada H, Andersen JS, Mann M, Terada N, Korsmeyer SJ . (2001). p70S6 kinase signals cell survival as well as growth, inactivating the pro-apoptotic molecule BAD. Proc Natl Acad Sci USA 98: 9666–9670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henry KW, Yuan X, Koszewski NJ, Onda H, Kwiatkowski DJ, Noonan DJ . (1998). Tuberous sclerosis gene 2 product modulates transcription mediated by steroid hormone receptor family members. J Biol Chem 273: 20535–20539.

    Article  CAS  PubMed  Google Scholar 

  • Hornigold N, Devlin J, Davies AM, Aveyard JS, Habuchi T, Knowles MA . (1999). Mutation of the 9q34 gene TSC1 in sporadic bladder cancer. Oncogene 18: 2657–2661.

    Article  CAS  PubMed  Google Scholar 

  • Inoki K, Li Y, Zhu T, Wu J, Guan K-L . (2002). TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol 4: 648–657.

    Article  CAS  PubMed  Google Scholar 

  • Inoki K, Zhu T, Guan K-L . (2003). TSC2 mediates cellular energy response to control cell growth and survival. Cell 115: 577–590.

    Article  CAS  PubMed  Google Scholar 

  • Jiang WG, Sampson J, Martin TA, Lee-Jones L, Watkins G, Douglas-Jones A et al. (2005). Tuberin and hamartin are aberrantly expressed and linked to clinical outcome in human breast cancer: the role of promoter methylation of TSC genes. Eur J Cancer 41: 1628–1636.

    Article  CAS  PubMed  Google Scholar 

  • Kalejta RF, Shenk T, Beavis AJ . (1997). Use of a membrane-localized green fluorescent protein allows simultaneous identification of transfected cells and cell cycle analysis by flow cytometry. Cytometry 29: 286–291.

    Article  CAS  PubMed  Google Scholar 

  • Knowles MA, Habuchi T, Kennedy W, Cuthbert-Heavens D . (2003a). Mutation spectrum of the 9q34 tuberous sclerosis gene TSC1 in transitional cell carcinoma of the bladder. Cancer Res 63: 7652–7656.

    CAS  PubMed  Google Scholar 

  • Knowles MA, Hornigold N, Pitt E . (2003b). Tuberous sclerosis complex (TSC) gene involvement in sporadic tumours. Biochem Soc Transact 31: 597–602.

    Article  CAS  Google Scholar 

  • Kolb TM, Duan L, Davis MA . (2005). Tsc2 expression increases the susceptibility of renal tumor cells to apoptosis. Toxicol Sci 88: 331–339.

    Article  CAS  PubMed  Google Scholar 

  • Kwiatkowski DJ . (2003). Tuberous sclerosis: from tubers to mTOR. Annals Hum Genet 67: 87–96.

    Article  CAS  Google Scholar 

  • Li Y, Corradetti MN, Inoki K, Guan K-L . (2003). TSC2: filling the GAP in the mTOR signaling pathway. Trends Biochem Sci 29: 32–38.

    Article  Google Scholar 

  • Ma L, Zhenbang C, Erdjument-Bromage H, Tempst P, Pandolfi PP . (2005). Phosphorylation and functional inactivation of TSC2 by Erk implications for tuberous sclerosis and cancer pathogenesis. Cell 121: 179–193.

    Article  CAS  PubMed  Google Scholar 

  • Manning BD, Tee AR, Logsdon MN, Blenis J, Cantley LC . (2002). Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/akt pathway. Mol Cell 10: 151–162.

    Article  CAS  PubMed  Google Scholar 

  • Miloloza A, Rosner M, Nellist M, Halley D, Bernaschek G, Hengstschläger M . (2000). The TSC1 gene product, hamartin, negatively regulates cell proliferation. Hum Mol Genet 9: 1721–1727.

    Article  CAS  PubMed  Google Scholar 

  • Pan D, Dong J, Zhang Y, Gao X . (2004). Tuberous sclerosis complex: from Drosophila to human disease. Trends Cell Biol 14: 78–85.

    Article  CAS  PubMed  Google Scholar 

  • Potter CJ, Pedraza LG, Xu T . (2002). Akt regulates growth by directly phosphorylating Tsc2. Nat Cell Biol 4: 658–665.

    Article  CAS  PubMed  Google Scholar 

  • Rosner M, Hengstschläger M . (2004). Tuberin binds p27 and negatively regulates its interaction with the SCF component Skp2. J Biol Chem 279: 48707–48715.

    Article  CAS  PubMed  Google Scholar 

  • Rosner M, Hofer K, Kubista K, Hengstschläger M . (2003). Cell size regulation by the human TSC tumor suppressor proteins depends on PI3K and FKBP38. Oncogene 22: 4786–4798.

    Article  CAS  PubMed  Google Scholar 

  • Roux PP, Ballif BA, Anjum R, Gygi SP, Blenis J . (2004). Tumor-promoting phorbol esters and activated Ras inactivate the tuberous sclerosis tumor suppressor complex via p90 ribosomal S6 kinase. Proc Natl Acad Sci USA 101: 13489–13494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shah OJ, Wang Z, Hunter T . (2004). Inappropriate activation of the TSC/Rheb/mTOR/S6 K cassette induces IRS1/2 depletion, insulin resistance, and cell survival deficiencies. Curr Biol 14: 1650–1656.

    Article  CAS  PubMed  Google Scholar 

  • Shaw RJ, Cantley LC . (2006). Ras, PI(3)K and mTOR signalling controls tumour cell growth. Nature 441: 424–430.

    Article  CAS  PubMed  Google Scholar 

  • Soucek T, Hölzl G, Bernaschek G, Hengstschläger M . (1998a). A role of the tuberous sclerosis gene-2 product during neuronal differentiation. Oncogene 16: 2197–2204.

    Article  CAS  PubMed  Google Scholar 

  • Soucek T, Pusch O, Wienecke R, DeClue JE, Hengstschläger M . (1997). Role of the tuberous sclerosis gene-2 product in cell cycle control. Loss of the tuberous sclerosis gene-2 induces quiescent cells to enter S phase. J Biol Chem 272: 29301–29308.

    Article  CAS  PubMed  Google Scholar 

  • Soucek T, Yeung RS, Hengstschläger M . (1998b). Inactivation of the cyclin-dependent kinase inhibitor p27 upon loss of the tuberous sclerosis complex gene-2. Proc Natl Acad Sci USA 95: 15653–15658.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tee AR, Fingar DC, Manning BD, Kwiatkowski DJ, Cantley LC, Blenis J . (2002). Tuberous sclerosis complex-1 and -2 gene products function together to inhibit mammalian target of rapamycin (mTOR)-mediated downstream signaling. Proc Natl Acad Sci USA 99: 13571–13576.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wohlfart S, Sebinger D, Gruber P, Buch J, Polgar D, Krupitza G et al. (2004). FAS (CD95) mutations are rare in gastric MALT lymphoma but occur more frequently in primary gastric diffuse large B-cell lymphoma. Am J Pathol 164: 1081–1089.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao G-H, Shoarinejad F, Jin F, Golemis EA, Yeung RS . (1997). The tuberous sclerosis 2 gene product, tuberin, functions as a Rab5 GTPase activating protein (GAP) in modulating endocytosis. J Biol Chem 272: 6097–6100.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Drs AJ Beavis, J Blenis, B Manning, T Ströbel, R Yeung for reagents. This research has been supported by the Herzfelder'sche Familienstiftung (Vienna, Austria) by the RedBull company (Salzburg, Austria) and by the FWF Austrian Science Fund (P18894-B12).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Hengstschläger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freilinger, A., Rosner, M., Hanneder, M. et al. Ras mediates cell survival by regulating tuberin. Oncogene 27, 2072–2083 (2008). https://doi.org/10.1038/sj.onc.1210844

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210844

Keywords

This article is cited by

Search

Quick links