Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Gadd45β is a pro-survival factor associated with stress-resistant tumors

Abstract

Tumors that acquire resistance against death stimuli constitute a severe problem in the context of cancer therapy. To determine genetic alterations that favor the development of stress-resistant tumors in vivo, we took advantage of polyclonal tumors generated after retroviral infection of newborn Eλ-MYC mice, in which the retroviral integration acts as a mutagen to enhance tumor progression. Tumor cells were cultivated ex vivo and exposed to γ-irradiation prior to their transplantation into syngenic recipients, thereby providing a strong selective pressure for pro-survival mutations. Secondary tumors developing from stress-resistant tumor stem cells were analysed for retroviral integration sites to reveal candidate genes whose dysregulation confer survival. In addition to the gene encoding the antiapoptotic Bcl-xL protein, we identified the gadd45b locus to be a novel common integration site in these tumors, leading to enhanced expression. In accord with a thus far undocumented role of Gadd45β in tumorigenesis, we showed that NIH3T3 cells overexpressing Gadd45β form tumors in NOD/SCID mice. Interestingly and differently to other known ‘classical’ antiapoptotic factors, high Gadd45β levels did not protect against MYC-, UV- or γ-irradiation-induced apoptosis, but conferred a strong and specific survival advantage to serum withdrawal.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Abbreviations

4OHT:

4-hydroxytamoxifen

CIS:

common integration site

eGFP:

enhanced green fluorescent protein

FACS:

fluorescence-activated cell sorting

Mo-MuLV:

Moloney-murine leukemia virus

PI:

propidium iodide

RT:

reverse transcriptase

References

  • Baxter E, Blyth K, Donehower L, Cameron E, Onions D, Neil J . (1996). Moloney murine leukemia virus-induced lymphomas in p53-deficient mice: overlapping pathways in tumor development? J Virol 70: 2095–2100.

    CAS  Google Scholar 

  • Bernier J, Hall E, Giaccia A . (2004). Radiation oncology: a century of achievements. Nat Rev Cancer 4: 737–747.

    Article  CAS  Google Scholar 

  • Blyth K, Stewart M, Bell M, James C, Evan G, Neil J et al. (2000). Sensitivity to myc-induced apoptosis is retained in spontaneous and transplanted lymphomas of CD2-mycER mice. Oncogene 19: 773–782.

    Article  CAS  Google Scholar 

  • Chabner BA, Roberts T . (2005). Chemotherapy and the war on cancer. Nat Rev Cancer 5: 65–71.

    Article  CAS  Google Scholar 

  • Das S, Cho J, Lambertz I, Kelliher MA, Eliopoulos AG, Du K et al. (2005). Tpl2/cot signals activate ERK, JNK, and NF-kappaB in a cell-type and stimulus-specific manner. J Biol Chem 280: 23748–23757.

    Article  CAS  Google Scholar 

  • De Smaele E, Zazzeroni F, Papa S, Nguyen DU, Jin R, Jones J et al. (2001). Induction of gadd45beta by NF-kappaB downregulates pro-apoptotic JNK signalling. Nature 414: 308–313.

    Article  CAS  Google Scholar 

  • Gupta M, Gupta S, Hoffman B, Liebermann DA . (2006). GADD45A and GADD45B protect hematopoietic cells from UV induced apoptosis via distinct signaling pathways including P38 activation and JNK inhibition. J Biol Chem 281: 17552–17558.

    Article  CAS  Google Scholar 

  • Gupta M, Gupta SK, Balliet AG, Hollander MC, Fornace AJ, Hoffman B et al. (2005). Hematopoietic cells from Gadd45a- and Gadd45b-deficient mice are sensitized to genotoxic-stress-induced apoptosis. Oncogene 24: 7170–7179.

    Article  CAS  Google Scholar 

  • Haupt Y, Alexander WS, Barri G, Klinken SP, Adams JM . (1991). Novel zinc finger gene implicated as myc collaborator by retrovirally accelerated lymphomagenesis in E mu-myc transgenic mice. Cell 65: 753–763.

    Article  CAS  Google Scholar 

  • Heinrichs S, Deppert W . (2003). Apoptosis or growth arrest: modulation of the cellular response to p53 by proliferative signals. Oncogene 22: 555–571.

    Article  CAS  Google Scholar 

  • Hwang HC, Martins CP, Bronkhorst Y, Randel E, Berns A, Fero M et al. (2002). Identification of oncogenes collaborating with p27Kip1 loss by insertional mutagenesis and high-throughput insertion site analysis. Proc Natl Acad Sci USA 99: 11293–11298.

    Article  CAS  Google Scholar 

  • Johnstone RW, Ruefli AA, Lowe SW . (2002). Apoptosis: a link between cancer genetics and chemotherapy. Cell 108: 153–164.

    Article  CAS  Google Scholar 

  • Kovalchuk AL, Qi CF, Torrey TA, Taddesse-Heath L, Feigenbaum L, Park SS et al. (2000). Burkitt lymphoma in the mouse. J Exp Med 192: 1183–1190.

    Article  CAS  Google Scholar 

  • Kroemer G, Jaattela M . (2005). Lysosomes and autophagy in cell death control. Nat Rev Cancer 5: 886–897.

    Article  CAS  Google Scholar 

  • Krug U, Ganser A, Koeffler H . (2002). Tumor suppressor genes in normal and malignant hematopoiesis. Oncogene 21: 3475–3495.

    Article  CAS  Google Scholar 

  • Kues WA, Carnwath JW, Paul D, Niemann H . (2002). Cell cycle synchronization of porcine fetal fibroblasts by serum deprivation initiates a nonconventional form of apoptosis. Cloning Stem Cells 4: 231–243.

    Article  CAS  Google Scholar 

  • Leicht M, Marx G, Karbach D, Gekle M, Kohler T, Zimmer HG . (2003). Mechanism of cell death of rat cardiac fibroblasts induced by serum depletion. Mol Cell Biochem 251: 119–126.

    Article  CAS  Google Scholar 

  • Liebermann DA, Hoffman B . (2002). Myeloid differentiation (MyD) primary response genes in hematopoiesis. Oncogene 21: 3391–3402.

    Article  CAS  Google Scholar 

  • Lindsten T, Golden JA, Zong WX, Minarcik J, Harris MH, Thompson CB . (2003). The proapoptotic activities of Bax and Bak limit the size of the neural stem cell pool. J Neurosci 23: 11112–11119.

    Article  CAS  Google Scholar 

  • Mikkers H, Allen J, Knipscheer P, Romeyn L, Hart A, Vink E et al. (2002). High-throughput retroviral tagging to identify components of specific signaling pathways in cancer. Nat Genet 32: 153–159.

    Article  CAS  Google Scholar 

  • Mikkers H, Berns A . (2003). Retroviral insertional mutagenesis: tagging cancer pathways. Adv Cancer Res 88: 53–99.

    CAS  Google Scholar 

  • Okada H, Mak TW . (2004). Pathways of apoptotic and non-apoptotic death in tumour cells. Nat Rev Cancer 4: 592–603.

    Article  CAS  Google Scholar 

  • Packham G, White EL, Eischen CM, Yang H, Parganas E, Ihle JN et al. (1998). Selective regulation of Bcl-XL by a Jak kinase-dependent pathway is bypassed in murine hematopoietic malignancies. Genes Dev 12: 2475–2487.

    Article  CAS  Google Scholar 

  • Paddenberg R, Loos S, Schoneberger HJ, Wulf S, Muller A, Iwig M et al. (2001). Serum withdrawal induces a redistribution of intracellular gelsolin towards F-actin in NIH 3T3 fibroblasts preceding apoptotic cell death. Eur J Cell Biol 80: 366–378.

    Article  CAS  Google Scholar 

  • Poirier Y, Kozak C, Jolicoeur P . (1988). Identification of a common helper provirus integration site in Abelson murine leukemia virus-induced lymphoma DNA. J Virol 62: 3985–3992.

    CAS  Google Scholar 

  • Schmidt M, Hoffmann G, Wissler M, Lemke N, Mussig A, Glimm H et al. (2001). Detection and direct genomic sequencing of multiple rare unknown flanking DNA in highly complex samples. Hum Gene Ther 12: 743–749.

    Article  CAS  Google Scholar 

  • Schwieger M, Lohler J, Friel J, Scheller M, Horak I, Stocking C . (2002). AML1-ETO inhibits maturation of multiple lymphohematopoietic lineages and induces myeloblast transformation in synergy with ICSBP deficiency. J Exp Med 196: 1227–1240.

    Article  CAS  Google Scholar 

  • Selvakumaran M, Lin HK, Sjin RT, Reed JC, Liebermann DA, Hoffman B . (1994). The novel primary response gene MyD118 and the proto-oncogenes myb, myc, and bcl-2 modulate transforming growth factor beta 1-induced apoptosis of myeloid leukemia cells. Mol Cell Biol 14: 2352–2360.

    Article  CAS  Google Scholar 

  • Shimizu S, Kanaseki T, Mizushima N, Mizuta T, Arakawa-Kobayashi S, Thompson CB et al. (2004). Role of Bcl-2 family proteins in a non-apoptotic programmed cell death dependent on autophagy genes. Nat Cell Biol 6: 1221–1228.

    Article  CAS  Google Scholar 

  • Simm A, Bertsch G, Frank H, Zimmermann U, Hoppe J . (1997). Cell death of AKR-2B fibroblasts after serum removal: a process between apoptosis and necrosis. J Cell Sci 110(Part 7): 819–828.

    CAS  Google Scholar 

  • Speidel D, Helmbold H, Deppert W . (2006). Dissection of transcriptional and non-transcriptional p53 activities in the response to genotoxic stress. Oncogene 25: 940–953.

    Article  CAS  Google Scholar 

  • Stewart M, MacKay N, Cameron ER, Neil JC . (2002). The common retroviral insertion locus Dsi1 maps 30 kilobases upstream of the P1 promoter of the murine Runx3/Cbfa3/Aml2 gene. J Virol 76: 4364–4369.

    Article  CAS  Google Scholar 

  • Tsujimoto Y . (2003). Cell death regulation by the Bcl-2 protein family in the mitochondria. J Cell Physiol 195: 158–167.

    Article  CAS  Google Scholar 

  • van der Lugt NM, Domen J, Verhoeven E, Linders K, van der Gulden H, Allen J et al. (1995). Proviral tagging in E mu-myc transgenic mice lacking the Pim-1 proto-oncogene leads to compensatory activation of Pim-2. EMBO J 14: 2536–2544.

    Article  CAS  Google Scholar 

  • van Lohuizen M, Verbeek S, Scheijen B, Wientjens E, van der Gulden H, Berns A . (1991). Identification of cooperating oncogenes in E mu-myc transgenic mice by provirus tagging. Cell 65: 737–752.

    Article  CAS  Google Scholar 

  • Yoo J, Ghiassi M, Jirmanova L, Balliet AG, Hoffman B, Fornace Jr AJ et al. (2003). Transforming growth factor-beta-induced apoptosis is mediated by Smad-dependent expression of GADD45b through p38 activation. J Biol Chem 278: 43001–43007.

    Article  CAS  Google Scholar 

  • Zazzeroni F, Papa S, Algeciras-Schimnich A, Alvarez K, Melis T, Bubici C et al. (2003). Gadd45 beta mediates the protective effects of CD40 costimulation against Fas-induced apoptosis. Blood 102: 3270–3279.

    Article  CAS  Google Scholar 

  • Zerbini LF, Wang Y, Czibere A, Correa RG, Cho JY, Ijiri K et al. (2004). NF-kappa B-mediated repression of growth arrest- and DNA-damage-inducible proteins 45alpha and gamma is essential for cancer cell survival. Proc Natl Acad Sci USA 101: 13618–13623.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Karen Blyth and Ewan Cameron for conditional MYC overexpressing cell lines, Arne Düsedau for providing FACS sorter support and other members of the Stocking laboratory for helpful discussions. This work was part of the doctoral thesis of A Engelmann, Department of Biology, University of Hamburg, Hamburg, Germany and was supported by a grant of the Deutsche Krebshilfe. The Heinrich-Pette-Institut is supported by the Freie und Hansestadt Hamburg and the German Ministry of Health and Social Safety.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C Stocking.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Engelmann, A., Speidel, D., Bornkamm, G. et al. Gadd45β is a pro-survival factor associated with stress-resistant tumors. Oncogene 27, 1429–1438 (2008). https://doi.org/10.1038/sj.onc.1210772

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210772

Keywords

This article is cited by

Search

Quick links