Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

MYST opportunities for growth control: yeast genes illuminate human cancer gene functions

Abstract

The MYST family of histone acetyltransferases (HATs) was initially defined by human genes with disease connections and by yeast genes identified for their role in epigenetic transcriptional silencing. Since then, many new MYST genes have been discovered through genetic and genomic approaches. Characterization of the complexes through which MYST proteins act, regions of the genome to which they are targeted and biological consequences when they are disrupted, all deepen the connections of MYST proteins to development, growth control and human cancers. Many of the insights into MYST family function have come from studies in model organisms. Herein, we review functions of two of the founding MYST genes, yeast SAS2 and SAS3, and the essential yeast MYST ESA1. Analysis of these genes in yeast has defined roles for MYST proteins in transcriptional activation and silencing, and chromatin-mediated boundary formation. They have further roles in DNA damage repair and nuclear integrity. The observation that MYST protein complexes share subunits with other HATs, histone deacetylases and other key nuclear proteins, many with connections to human cancers, strengthens the idea that coordinating distinct chromatin modifications is critical for regulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Akhtar A, Zink D, Becker PB . (2000). Chromodomains are protein–RNA interaction modules. Nature 407: 405–409.

    CAS  PubMed  Google Scholar 

  • Allard S, Utley RT, Savard J, Clarke A, Grant P, Brandl CJ et al. (1999). NuA4, an essential transcription adaptor/histone H4 acetyltransferase complex containing Esa1p and the ATM-related cofactor Tra1p. EMBO J 18: 5108–5119.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Altaf M, Saksouk N, Côté J . (2007). Histone modifications in response to DNA damage. Mutat Res 618: 81–90.

    CAS  PubMed  Google Scholar 

  • Anafi M, Yang YF, Barlev NA, Govindan MV, Berger SL, Butt TR et al. (2000). GCN5 and ADA adaptor proteins regulate triiodothyronine/GRIP1 and SRC-1 coactivator-dependent gene activation by the human thyroid hormone receptor. Mol Endocrinol 14: 718–732.

    CAS  PubMed  Google Scholar 

  • Avvakumov N, Côté J . (2007). The MYST family of histone acetyltransferases and their intimate links to cancer. Oncogene 26: 5395–5407.

    CAS  PubMed  Google Scholar 

  • Babiarz JE, Halley JE, Rine J . (2006). Telomeric heterochromatin boundaries require NuA4-dependent acetylation of histone variant H2A.Z in Saccharomyces cerevisiae. Genes Dev 20: 700–710.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baker SP, Grant PA . (2007). The SAGA continues: expanding the cellular role of a transcriptional co-activator complex. Oncogene 26: 5329–5340.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bedalov A, Gatbonton T, Irvine WP, Gottschling DE, Simon JA . (2001). Identification of a small molecule inhibitor of Sir2p. Proc Natl Acad Sci USA 98: 15113–15118.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bird AW, Yu DY, Pray-Grant MG, Qiu Q, Harmon KE, Megee PC et al. (2002). Acetylation of histone H4 by Esa1 is required for DNA double-strand break repair. Nature 419: 411–415.

    CAS  PubMed  Google Scholar 

  • Bittner CB, Zeisig DT, Zeisig BB, Slany RK . (2004). Direct physical and functional interaction of the NuA4 complex components Yaf9p and Swc4p. Eukaryot Cell 3: 976–983.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Borrow J, Shearman AM, Stanton Jr VP, Becher R, Collins T, Williams AJ et al. (1996). The t(7;11)(p15;p15) translocation in acute myeloid leukaemia fuses the genes for nucleoporin NUP98 and class I homeoprotein HOXA9. Nat Genet 12: 159–167.

    CAS  PubMed  Google Scholar 

  • Boudreault AA, Cronier D, Selleck W, Lacoste N, Utley RT, Allard S et al. (2003). Yeast enhancer of polycomb defines global Esa1-dependent acetylation of chromatin. Genes Dev 17: 1415–1428.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brachmann RK, Vidal M, Boeke JD . (1996). Dominant-negative p53 mutations selected in yeast hit cancer hot spots. Proc Natl Acad Sci USA 93: 4091–4095.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brown CE, Howe L, Sousa K, Alley SC, Carrozza MJ, Tan S et al. (2001). Recruitment of HAT complexes by direct activator interactions with the ATM-related Tra1 subunit. Science 292: 2333–2337.

    CAS  PubMed  Google Scholar 

  • Brown K, Chen Y, Underhill TM, Mymryk JS, Torchia J . (2003). The coactivator p/CIP/SRC-3 facilitates retinoic acid receptor signaling via recruitment of GCN5. J Biol Chem 278: 39402–39412.

    CAS  PubMed  Google Scholar 

  • Brownell JE, Zhou J, Ranalli T, Kobayashi R, Edmondson DG, Roth SY et al. (1996). Tetrahymena histone acetyltransferase A: a homolog to yeast Gcn5p linking histone acetylation to gene activation. Cell 84: 843–851.

    CAS  PubMed  Google Scholar 

  • Burke TW, Cook JG, Asano M, Nevins JR . (2001). Replication factors MCM2 and ORC1 interact with the histone acetyltransferase HBO1. J Biol Chem 276: 15397–15408.

    CAS  PubMed  Google Scholar 

  • Cairns BR, Henry NL, Kornberg RD . (1996). TFG/TAF30/ANC1, a component of the yeast SWI/SNF complex that is similar to the leukemogenic proteins ENL and AF-9. Mol Cell Biol 16: 3308–3316.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carrozza MJ, Li B, Florens L, Suganuma T, Swanson SK, Lee KK et al. (2005). Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription. Cell 123: 581–592.

    CAS  PubMed  Google Scholar 

  • Choy JS, Kron SJ . (2002). NuA4 subunit Yng2 function in intra-S-phase DNA damage response. Mol Cell Biol 22: 8215–8225.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Choy JS, Tobe BT, Huh JH, Kron SJ . (2001). Yng2p-dependent NuA4 histone H4 acetylation activity is required for mitotic and meiotic progression. J Biol Chem 276: 43653–43662.

    CAS  PubMed  Google Scholar 

  • Clarke AS, Lowell JE, Jacobson SJ, Pillus L . (1999). Esa1p is an essential histone acetyltransferase required for cell cycle progression. Mol Cell Biol 19: 2515–2526.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Clarke AS, Samal E, Pillus L . (2006). Distinct roles for the essential MYST family HAT Esa1p in transcriptional silencing. Mol Biol Cell 17: 1744–1757.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Daniel JA, Pray-Grant MG, Grant PA . (2005). Effector proteins for methylated histones: an expanding family. Cell Cycle 4: 919–926.

    CAS  PubMed  Google Scholar 

  • Debernardi S, Bassini A, Jones LK, Chaplin T, Linder B, de Bruijn DR et al. (2002). The MLL fusion partner AF10 binds GAS41, a protein that interacts with the human SWI/SNF complex. Blood 99: 275–281.

    PubMed  Google Scholar 

  • Downs JA, Allard S, Jobin-Robitaille O, Javaheri A, Auger A, Bouchard N et al. (2004). Binding of chromatin-modifying activities to phosphorylated histone H2A at DNA damage sites. Mol Cell 16: 979–990.

    CAS  PubMed  Google Scholar 

  • Doyon Y, Cayrou C, Ullah M, Landry AJ, Côté V, Selleck W et al. (2006). ING tumor suppressor proteins are critical regulators of chromatin acetylation required for genome expression and perpetuation. Mol Cell 21: 51–64.

    CAS  PubMed  Google Scholar 

  • Doyon Y, Selleck W, Lane WS, Tan S, Côté J . (2004). Structural and functional conservation of the NuA4 histone acetyltransferase complex from yeast to humans. Mol Cell Biol 24: 1884–1896.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dziak R, Leishman D, Radovic M, Tye BK, Yankulov K . (2003). Evidence for a role of MCM (mini-chromosome maintenance)5 in transcriptional repression of sub-telomeric and Ty-proximal genes in Saccharomyces cerevisiae. J Biol Chem 278: 27372–27381.

    CAS  PubMed  Google Scholar 

  • Ehrenhofer-Murray AE, Rivier DH, Rine J . (1997). The role of Sas2, an acetyltransferase homologue of Saccharomyces cerevisiae, in silencing and ORC function. Genetics 145: 923–934.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eisen A, Utley RT, Nourani A, Allard S, Schmidt P, Lane WS et al. (2001). The yeast NuA4 and Drosophila MSL complexes contain homologous subunits important for transcription regulation. J Biol Chem 276: 3484–3491.

    CAS  PubMed  Google Scholar 

  • Galarneau L, Nourani A, Boudreault AA, Zhang Y, Heliot L, Allard S et al. (2000). Multiple links between the NuA4 histone acetyltransferase complex and epigenetic control of transcription. Mol Cell 5: 927–937.

    CAS  PubMed  Google Scholar 

  • Georgiakaki M, Chabbert-Buffet N, Dasen B, Meduri G, Wenk S, Rajhi L et al. (2006). Ligand-controlled interaction of histone acetyltransferase binding to ORC-1 (HBO1) with the N-terminal transactivating domain of progesterone receptor induces steroid receptor coactivator 1-dependent coactivation of transcription. Mol Endocrinol 20: 2122–2140.

    CAS  PubMed  Google Scholar 

  • Gómez EB, Espinosa JM, Forsburg SL . (2005). Schizosaccharomyces pombe mst2+ encodes a MYST family histone acetyltransferase that negatively regulates telomere silencing. Mol Cell Biol 25: 8887–8903.

    PubMed  PubMed Central  Google Scholar 

  • Grant PA, Schieltz D, Pray-Grant MG, Yates III JR, Workman JL . (1998). The ATM-related cofactor Tra1 is a component of the purified SAGA complex. Mol Cell 2: 863–867.

    CAS  PubMed  Google Scholar 

  • Grozinger CM, Chao ED, Blackwell HE, Moazed D, Schreiber SL . (2001). Identification of a class of small molecule inhibitors of the sirtuin family of NAD-dependent deacetylases by phenotypic screening. J Biol Chem 276: 38837–38843.

    CAS  PubMed  Google Scholar 

  • Grunstein M . (1990). Histone function in transcription. Annu Rev Cell Biol 6: 643–678.

    CAS  PubMed  Google Scholar 

  • Gupta A, Sharma GG, Young CS, Agarwal M, Smith ER, Paull TT et al. (2005). Involvement of human MOF in ATM function. Mol Cell Biol 25: 5292–5305.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hilfiker A, Hilfiker-Kleiner D, Pannuti A, Lucchesi JC . (1997). mof, A putative acetyl transferase gene related to the Tip60 and MOZ human genes and to the SAS genes of yeast, is required for dosage compensation in Drosophila. EMBO J 16: 2054–2060.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Howe L, Auston D, Grant P, John S, Cook RG, Workman JL et al. (2001). Histone H3 specific acetyltransferases are essential for cell cycle progression. Genes Dev 15: 3144–3154.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Howe L, Kusch T, Muster N, Chaterji R, Yates III JR, Workman JL . (2002). Yng1p modulates the activity of Sas3p as a component of the yeast NuA3 histone acetyltransferase complex. Mol Cell Biol 22: 5047–5053.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Iizuka M, Matsui T, Takisawa H, Smith MM . (2006). Regulation of replication licensing by acetyltransferase Hbo1. Mol Cell Biol 26: 1098–1108.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Iizuka M, Stillman B . (1999). Histone acetyltransferase HBO1 interacts with the ORC1 subunit of the human initiator protein. J Biol Chem 274: 23027–23034.

    CAS  PubMed  Google Scholar 

  • Jacobson S, Pillus L . (2004). Molecular requirements for gene expression mediated by targeted histone acetyltransferases. Mol Cell Biol 24: 6029–6039.

    CAS  PubMed  PubMed Central  Google Scholar 

  • John S, Howe L, Tafrov ST, Grant PA, Sternglanz R, Workman JL . (2000). The something about silencing protein, Sas3, is the catalytic subunit of NuA3, a yTAF(II)30-containing HAT complex that interacts with the Spt16 subunit of the yeast CP (Cdc68/Pob3)-FACT complex. Genes Dev 14: 1196–1208.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kabani M, Michot K, Boschiero C, Werner M . (2005). Anc1 interacts with the catalytic subunits of the general transcription factors TFIID and TFIIF, the chromatin remodeling complexes RSC and INO80, and the histone acetyltransferase complex NuA3. Biochem Biophys Res Commun 332: 398–403.

    CAS  PubMed  Google Scholar 

  • Kamine J, Elangovan B, Subramanian T, Coleman D, Chinnadurai G . (1996). Identification of a cellular protein that specifically interacts with the essential cysteine region of the HIV-1 Tat transactivator. Virology 216: 357–366.

    CAS  PubMed  Google Scholar 

  • Keogh MC, Kurdistani SK, Morris SA, Ahn SH, Podolny V, Collins SR et al. (2005). Cotranscriptional Set2 methylation of histone H3 lysine 36 recruits a repressive Rpd3 complex. Cell 123: 593–605.

    CAS  PubMed  Google Scholar 

  • Keogh MC, Mennella TA, Sawa C, Berthelet S, Krogan NJ, Wolek A et al. (2006). The Saccharomyces cerevisiae histone H2A variant Htz1 is acetylated by NuA4. Genes Dev 20: 660–665.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kimura A, Umehara T, Horikoshi M . (2002). Chromosomal gradient of histone acetylation established by Sas2p and Sir2p functions as a shield against gene silencing. Nat Genet 32: 370–377.

    PubMed  Google Scholar 

  • Kirchmaier AL, Rine J . (2001). DNA replication-independent silencing in S. cerevisiae. Science 291: 646–650.

    CAS  PubMed  Google Scholar 

  • Kleff S, Andrulis ED, Anderson CW, Sternglanz R . (1995). Identification of a gene encoding a yeast histone H4 acetyltransferase. J Biol Chem 270: 24674–24677.

    CAS  PubMed  Google Scholar 

  • Kobor MS, Venkatasubrahmanyam S, Meneghini MD, Gin JW, Jennings JL, Link AJ et al. (2004). A protein complex containing the conserved Swi2/Snf2-related ATPase Swr1p deposits histone variant H2A.Z into euchromatin. PLoS Biol 2: E131.

    PubMed  PubMed Central  Google Scholar 

  • Krogan NJ, Baetz K, Keogh MC, Datta N, Sawa C, Kwok TC et al. (2004). Regulation of chromosome stability by the histone H2A variant Htz1, the Swr1 chromatin remodeling complex, and the histone acetyltransferase NuA4. Proc Natl Acad Sci USA 101: 13513–13518.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Krogan NJ, Cagney G, Yu H, Zhong G, Guo X, Ignatchenko A et al. (2006). Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440: 637–643.

    CAS  PubMed  Google Scholar 

  • Krogan NJ, Keogh MC, Datta N, Sawa C, Ryan OW, Ding H et al. (2003). A Snf2 family ATPase complex required for recruitment of the histone H2A variant Htz1. Mol Cell 12: 1565–1576.

    CAS  PubMed  Google Scholar 

  • Le Masson I, Yu DY, Jensen K, Chevalier A, Courbeyrette R, Boulard Y et al. (2003). Yaf9, a novel NuA4 histone acetyltransferase subunit, is required for the cellular response to spindle stress in yeast. Mol Cell Biol 23: 6086–6102.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Legube G, Linares LK, Tyteca S, Caron C, Scheffner M, Chevillard-Briet M et al. (2004). Role of the histone acetyl transferase Tip60 in the p53 pathway. J Biol Chem 279: 44825–44833.

    CAS  PubMed  Google Scholar 

  • Li YC, Cheng TH, Gartenberg MR . (2001). Establishment of transcriptional silencing in the absence of DNA replication. Science 291: 650–653.

    CAS  PubMed  Google Scholar 

  • Liu Y, Vidanes G, Lin YC, Mori S, Siede W . (2000). Characterization of a Saccharomyces cerevisiae homologue of Schizosaccharomyces pombe Chk1 involved in DNA-damage-induced M-phase arrest. Mol Gen Genet 262: 1132–1146.

    CAS  PubMed  Google Scholar 

  • Lonard DM, O'Malley BW . (2006). The expanding cosmos of nuclear receptor coactivators. Cell 125: 411–414.

    CAS  PubMed  Google Scholar 

  • Martin DG, Grimes DE, Baetz K, Howe L . (2006). Methylation of histone H3 mediates the association of the NuA3 histone acetyltransferase with chromatin. Mol Cell Biol 26: 3018–3028.

    CAS  PubMed  PubMed Central  Google Scholar 

  • McMahon SB, Van Buskirk HA, Dugan KA, Copeland TD, Cole MD . (1998). The novel ATM-related protein TRRAP is an essential cofactor for the c-Myc and E2F oncoproteins. Cell 94: 363–374.

    CAS  PubMed  Google Scholar 

  • Meijsing SH, Ehrenhofer-Murray AE . (2001). The silencing complex SAS-I links histone acetylation to the assembly of repressed chromatin by CAF-I and Asf1 in Saccharomyces cerevisiae. Genes Dev 15: 3169–3182.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Millar CB, Xu F, Zhang K, Grunstein M . (2006). Acetylation of H2AZ Lys 14 is associated with genome-wide gene activity in yeast. Genes Dev 20: 711–722.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Murr R, Vaissière T, Sawan C, Shukla V, Herceg Z . (2007). Orchestration of chromatin-based processes: mind the TRRAP. Oncogene 26: 5358–5372.

    CAS  PubMed  Google Scholar 

  • Nishikawa J, Saito K, Goto J, Dakeyama F, Matsuo M, Nishihara T . (1999). New screening methods for chemicals with hormonal activities using interaction of nuclear hormone receptor with coactivator. Toxicol Appl Pharmacol 154: 76–83.

    CAS  PubMed  Google Scholar 

  • Nourani A, Doyon Y, Utley RT, Allard S, Lane WS, Côté J . (2001). Role of an ING1 growth regulator in transcriptional activation and targeted histone acetylation by the NuA4 complex. Mol Cell Biol 21: 7629–7640.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nourani A, Howe L, Pray-Grant MG, Workman JL, Grant PA, Côté J . (2003). Opposite role of yeast ING family members in p53-dependent transcriptional activation. J Biol Chem 278: 19171–19175.

    CAS  PubMed  Google Scholar 

  • Nourani A, Utley RT, Allard S, Côté J . (2004). Recruitment of the NuA4 complex poises the PHO5 promoter for chromatin remodeling and activation. EMBO J 23: 2597–2607.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ogryzko VV . (2001). Mammalian histone acetyltransferases and their complexes. Cell Mol Life Sci 58: 683–692.

    CAS  PubMed  Google Scholar 

  • Olaharski AJ, Rine J, Marshall BL, Babiarz J, Zhang L, Verdin E et al. (2005). The flavoring agent dihydrocoumarin reverses epigenetic silencing and inhibits sirtuin deacetylases. PLoS Genet 1: e77.

    PubMed  PubMed Central  Google Scholar 

  • Ooi SL, Pan X, Peyser BD, Ye P, Meluh PB, Yuan DS et al. (2006). Global synthetic-lethality analysis and yeast functional profiling. Trends Genet 22: 56–63.

    CAS  PubMed  Google Scholar 

  • Osada S, Sutton A, Muster N, Brown CE, Yates III JR, Sternglanz R et al. (2001). The yeast SAS (something about silencing) protein complex contains a MYST-type putative acetyltransferase and functions with chromatin assembly factor ASF1. Genes Dev 15: 3155–3168.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Panchenko MV, Zhou MI, Cohen HT . (2004). von Hippel–Lindau partner Jade-1 is a transcriptional co-activator associated with histone acetyltransferase activity. J Biol Chem 279: 56032–56041.

    CAS  PubMed  Google Scholar 

  • Parthun MR, Widom J, Gottschling DE . (1996). The major cytoplasmic histone acetyltransferase in yeast: links to chromatin replication and histone metabolism. Cell 87: 85–94.

    CAS  PubMed  Google Scholar 

  • Pokholok DK, Harbison CT, Levine S, Cole M, Hannett NM, Lee TI et al. (2005). Genome-wide map of nucleosome acetylation and methylation in yeast. Cell 122: 517–527.

    CAS  PubMed  Google Scholar 

  • Pray-Grant MG, Schieltz D, McMahon SJ, Wood JM, Kennedy EL, Cook RG et al. (2002). The novel SLIK histone acetyltransferase complex functions in the yeast retrograde response pathway. Mol Cell Biol 22: 8774–8786.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rea S, Xouri G, Akhtar A . (2007). Males absent on the first (MOF): from flies to humans. Oncogene 26: 5385–5394.

    CAS  PubMed  Google Scholar 

  • Reid JL, Iyer VR, Brown PO, Struhl K . (2000). Coordinate regulation of yeast ribosomal protein genes is associated with targeted recruitment of Esa1 histone acetylase. Mol Cell 6: 1297–1307.

    CAS  PubMed  Google Scholar 

  • Reifsnyder C, Lowell J, Clarke A, Pillus L . (1996). Yeast SAS silencing genes and human genes associated with AML and HIV-1 Tat interactions are homologous with acetyltransferases. Nat Genet 14: 42–49.

    CAS  PubMed  Google Scholar 

  • Robert F, Pokholok DK, Hannett NM, Rinaldi NJ, Chandy M, Rolfe A et al. (2004). Global position and recruitment of HATs and HDACs in the yeast genome. Mol Cell 16: 199–209.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saleh A, Schieltz D, Ting N, McMahon SB, Litchfield DW, Yates III JR et al. (1998). Tra1p is a component of the yeast Ada. Spt transcriptional regulatory complexes. J Biol Chem 273: 26559–26565.

    CAS  PubMed  Google Scholar 

  • Schreiner SA, Garcia-Cuellar MP, Fey GH, Slany RK . (1999). The leukemogenic fusion of MLL with ENL creates a novel transcriptional transactivator. Leukemia 13: 1525–1533.

    CAS  PubMed  Google Scholar 

  • Selleck W, Fortin I, Sermwittayawong D, Côté J, Tan S . (2005). The Saccharomyces cerevisiae Piccolo NuA4 histone acetyltransferase complex requires the Enhancer of Polycomb A domain and chromodomain to acetylate nucleosomes. Mol Cell Biol 25: 5535–5542.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma M, Zarnegar M, Li X, Lim B, Sun Z . (2000). Androgen receptor interacts with a novel MYST protein, HBO1. J Biol Chem 275: 35200–35208.

    CAS  PubMed  Google Scholar 

  • Shen X, Xiao H, Ranallo R, Wu WH, Wu C . (2003). Modulation of ATP-dependent chromatin-remodeling complexes by inositol polyphosphates. Science 299: 112–114.

    CAS  PubMed  Google Scholar 

  • Shia WJ, Li B, Workman JL . (2006). SAS-mediated acetylation of histone H4 Lys 16 is required for H2A.Z incorporation at subtelomeric regions in Saccharomyces cerevisiae. Genes Dev 20: 2507–2512.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shia WJ, Osada S, Florens L, Swanson SK, Washburn MP, Workman JL . (2005). Characterization of the yeast trimeric–SAS acetyltransferase complex. J Biol Chem 280: 11987–11994.

    CAS  PubMed  Google Scholar 

  • Slany RK, Lavau C, Cleary ML . (1998). The oncogenic capacity of HRX-ENL requires the transcriptional transactivation activity of ENL and the DNA binding motifs of HRX. Mol Cell Biol 18: 122–129.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smith ER, Eisen A, Gu W, Sattah M, Pannuti A, Zhou J et al. (1998a). ESA1 is a histone acetyltransferase that is essential for growth in yeast. Proc Natl Acad Sci USA 95: 3561–3565.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smith ER, Pannuti A, Gu W, Steurnagel A, Cook RG, Allis CD et al. (2000). The Drosophila MSL complex acetylates histone H4 at lysine 16, a chromatin modification linked to dosage compensation. Mol Cell Biol 20: 312–318.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smith JS, Brachmann CB, Pillus L, Boeke JD . (1998b). Distribution of a limited Sir2 protein pool regulates the strength of yeast rDNA silencing and is modulated by Sir4p. Genetics 149: 1205–1219.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sterner DE, Belotserkovskaya R, Berger SL . (2002). SALSA, a variant of yeast SAGA, contains truncated Spt7, which correlates with activated transcription. Proc Natl Acad Sci USA 99: 11622–11627.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sterner DE, Berger SL . (2000). Acetylation of histones and transcription-related factors. Microbiol Mol Biol Rev 64: 435–459.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Suka N, Luo K, Grunstein M . (2002). Sir2p and Sas2p opposingly regulate acetylation of yeast histone H4 lysine16 and spreading of heterochromatin. Nat Genet 32: 378–383.

    CAS  PubMed  Google Scholar 

  • Suka N, Suka Y, Carmen AA, Wu J, Grunstein M . (2001). Highly specific antibodies determine histone acetylation site usage in yeast heterochromatin and euchromatin. Mol Cell 8: 473–479.

    CAS  PubMed  Google Scholar 

  • Sutton A, Shia WJ, Band D, Kaufman PD, Osada S, Workman JL et al. (2003). Sas4 and Sas5 are required for the histone acetyltransferase activity of Sas2 in the SAS complex. J Biol Chem 278: 16887–16892.

    CAS  PubMed  Google Scholar 

  • Sykes SM, Mellert HS, Holbert MA, Li K, Marmorstein R, Lane WS et al. (2006). Acetylation of the p53 DNA-binding domain regulates apoptosis induction. Mol Cell 24: 841–851.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takechi S, Nakayama T . (1999). Sas3 is a histone acetyltransferase and requires a zinc finger motif. Biochem Biophys Res Commun 266: 405–410.

    CAS  PubMed  Google Scholar 

  • Tamburini BA, Tyler JK . (2005). Localized histone acetylation and deacetylation triggered by the homologous recombination pathway of double-strand DNA repair. Mol Cell Biol 25: 4903–4913.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tang Y, Luo J, Zhang W, Gu W . (2006). Tip60-dependent acetylation of p53 modulates the decision between cell–cycle arrest and apoptosis. Mol Cell 24: 827–839.

    CAS  PubMed  Google Scholar 

  • Taverna SD, Ilin S, Rogers RS, Tanny JC, Lavender H, Li H et al. (2006). Yng1 PHD finger binding to H3 trimethylated at K4 promotes NuA3 HAT activity at K14 of H3 and transcription at a subset of targeted ORFs. Mol Cell 24: 785–796.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Timmermann S, Lehrmann H, Polesskaya A, Harel-Bellan A . (2001). Histone acetylation and disease. Cell Mol Life Sci 58: 728–736.

    CAS  PubMed  Google Scholar 

  • Tong AH, Evangelista M, Parsons AB, Xu H, Bader GD, Page N et al. (2001). Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science 294: 2364–2368.

    CAS  PubMed  Google Scholar 

  • Troke PJ, Kindle KB, Collins HM, Heery DM . (2006). MOZ fusion proteins in acute myeloid leukaemia. Biochem Soc Symp 73: 23–39.

    CAS  Google Scholar 

  • Utley RT, Côté J . (2003). The MYST family of histone acetyltransferases. Curr Top Microbiol Immunol 274: 203–236.

    CAS  PubMed  Google Scholar 

  • Vassilev A, Yamauchi J, Kotani T, Prives C, Avantaggiati ML, Qin J et al. (1998). The 400 kDa subunit of the PCAF histone acetylase complex belongs to the ATM superfamily. Mol Cell 2: 869–875.

    CAS  PubMed  Google Scholar 

  • Vogelauer M, Wu J, Suka N, Grunstein M . (2000). Global histone acetylation and deacetylation in yeast. Nature 408: 495–498.

    CAS  PubMed  Google Scholar 

  • Xu EY, Kim S, Replogle K, Rine J, Rivier DH . (1999a). Identification of SAS4 and SAS5, two genes that regulate silencing in Saccharomyces cerevisiae. Genetics 153: 13–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu EY, Kim S, Rivier DH . (1999b). SAS4 and SAS5 are locus-specific regulators of silencing in Saccharomyces cerevisiae. Genetics 153: 25–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yan Y, Barlev NA, Haley RH, Berger SL, Marmorstein R . (2000). Crystal structure of yeast Esa1 suggests a unified mechanism for catalysis and substrate binding by histone acetyltransferases. Mol Cell 6: 1195–1205.

    CAS  PubMed  Google Scholar 

  • Yang XJ . (2004). The diverse superfamily of lysine acetyltransferases and their roles in leukemia and other diseases. Nucleic Acids Res 32: 959–976.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zeisig BB, Milne T, Garcia-Cuellar MP, Schreiner S, Martin ME, Fuchs U et al. (2004). Hoxa9 and Meis1 are key targets for MLL-ENL-mediated cellular immortalization. Mol Cell Biol 24: 617–628.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Richardson DO, Roberts DN, Utley R, Erdjument-Bromage H, Tempst P et al. (2004). The Yaf9 component of the SWR1 and NuA4 complexes is required for proper gene expression, histone H4 acetylation, and Htz1 replacement near telomeres. Mol Cell Biol 24: 9424–9436.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang W, Xia X, Reisenauer MR, Hemenway CS, Kone BC . (2006). Dot1a-AF9 complex mediates histone H3 Lys-79 hypermethylation and repression of ENaCalpha in an aldosterone-sensitive manner. J Biol Chem 281: 18059–18068.

    CAS  PubMed  Google Scholar 

  • Zhang Y, Rowley JD . (2006). Chromatin structural elements and chromosomal translocations in leukemia. DNA Repair (Amst) 5: 1282–1297.

    CAS  Google Scholar 

  • Zhou MI, Wang H, Ross JJ, Kuzmin I, Xu C, Cohen HT . (2002). The von Hippel–Lindau tumor suppressor stabilizes novel plant homeodomain protein Jade-1. J Biol Chem 277: 39887–39898.

    CAS  PubMed  Google Scholar 

  • Zong H, Li Z, Liu L, Hong Y, Yun X, Jiang J et al. (2005). Cyclin-dependent kinase 11(p58) interacts with HBO1 and enhances its histone acetyltransferase activity. FEBS Lett 579: 3579–3588.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank current and previous collaborators and lab members for their contributions to our work and M Krick and R Darst for comments on this manuscript. Our laboratory has been supported by the National Institutes of Health and the University of California Cancer Research Coordinating Committee.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L Pillus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lafon, A., Chang, C., Scott, E. et al. MYST opportunities for growth control: yeast genes illuminate human cancer gene functions. Oncogene 26, 5373–5384 (2007). https://doi.org/10.1038/sj.onc.1210606

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210606

Keywords

This article is cited by

Search

Quick links