Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

A crosstalk between hSiah2 and Pias E3-ligases modulates Pias-dependent activation

Abstract

Protein inhibitor of activated STAT (Pias) and human homologues of seven in absentia (hSiah) proteins both exhibit properties of ubiquitin-family peptides conjugating enzymes. Pias present E3-ligase activity for small ubiquitin-related modifiers (Sumo) covalent attachment to their targets. This post-translational modification is responsible for the activation of different transcription factors such as AP1. HSiah proteins possess ubiquitin-E3-ligase activity that triggers their partners to proteasomal-dependent degradation. The present study identifies Pias as a new hSiah2-interacting protein. We demonstrate that hSiah2 regulates specifically the proteasome-dependent degradation of Pias proteins. On reverse, Pias does not prevent hSiah2 degradation. We provide evidences for hSiah2-dependent degradation of Pias as being a mechanism in the regulation of c-jun N-terminal kinase-activating pathways. This report describes a new interconnection between sumoylation and ubiquitination pathways by regulating the levels of the E3-ligases available for these processes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Abbreviations

aa:

amino acid

Ab:

antibody

CHX:

cycloheximide

E3:

E3-ubiquitin-protein ligase

hSiah:

human homologues of seven in absentia

Pias:

proteins inhibitor of activated STAT

SUMO:

small ubiquitin-related modifiers

Ub:

ubiquitin

References

  • Chung CD, Liao J, Liu B, Rao X, Jay P, Berta P et al. (1997). Specific inhibition of Stat3 signal transduction by PIAS3. Science 278: 1803–1805.

    Article  CAS  Google Scholar 

  • Della NG, Senior PV, Bowtell DD . (1993). Isolation and characterisation of murine homologues of the Drosophila seven in absentia gene (sina). Development 117: 1333–1343.

    CAS  Google Scholar 

  • Depaux A, Regnier-Ricard F, Germani A, Varin-Blank N . (2006). Dimerization of hSiah proteins regulates their stability. Biochem Biophys Res Commun 348: 857–863.

    Article  CAS  Google Scholar 

  • Desterro JM, Rodriguez MS, Kemp GD, Hay RT . (1999). Identification of the enzyme required for activation of the small ubiquitin-like protein SUMO-1. J Biol Chem 274: 10618–10624.

    Article  CAS  Google Scholar 

  • Desterro JM, Thomson J, Hay RT . (1997). Ubch9 conjugates SUMO but not ubiquitin. FEBS Lett 417: 297–300.

    Article  CAS  Google Scholar 

  • Driscoll J, Goldberg AL . (1990). The proteasome (multicatalytic protease) is a component of the 1500-kDa proteolytic complex which degrades ubiquitin-conjugated proteins. J Biol Chem 265: 4789–4792.

    CAS  Google Scholar 

  • Duval D, Duval G, Kedinger C, Poch O, Boeuf H . (2003). The ‘PINIT’ motif, of a newly identified conserved domain of the PIAS protein family, is essential for nuclear retention of PIAS3L. FEBS Lett 554: 111–118.

    Article  CAS  Google Scholar 

  • Floyd ZE, Trausch-Azar JS, Reinstein E, Ciechanover A, Schwartz AL . (2001). The nuclear ubiquitin-proteasome system degrades MyoD. J Biol Chem 276: 22468–22475.

    Article  CAS  Google Scholar 

  • Fogal V, Gostissa M, Sandy P, Zacchi P, Sternsdorf T, Jensen K et al. (2000). Regulation of p53 activity in nuclear bodies by a specific PML isoform. EMBO J 19: 6185–6195.

    Article  CAS  Google Scholar 

  • Freemont PS . (2000). RING for destruction? Curr Biol 10: R84–R87.

    Article  CAS  Google Scholar 

  • Germani A, Bruzzoni-Giovanelli H, Fellous A, Gisselbrecht S, Varin-Blank N, Calvo F . (2000). SIAH-1 interacts with alpha-tubulin and degrades the kinesin Kid by the proteasome pathway during mitosis. Oncogene 19: 5997–6006.

    Article  CAS  Google Scholar 

  • Germani A, Prabel A, Mourah S, Podgorniak MP, Di Carlo A, Ehrlich R et al. (2003). SIAH-1 interacts with CtIP and promotes its degradation by the proteasome pathway. Oncogene 22: 8845–8851.

    Article  CAS  Google Scholar 

  • Germani A, Romero F, Houlard M, Camonis J, Gisselbrecht S, Fischer S et al. (1999). hSiah2 is a new Vav binding protein which inhibits Vav-mediated signaling pathways. Mol Cell Biol 19: 3798–3807.

    Article  CAS  Google Scholar 

  • Gross M, Liu B, Tan JA, French FS, Carey M, Shuai K . (2001). Distinct effects of PIAS proteins on androgen-mediated gene activation in prostate cancer cells. Oncogene 20: 3880–3887.

    Article  CAS  Google Scholar 

  • Habelhah H, Frew IJ, Laine A, Janes PW, Relaix F, Sassoon D et al. (2002). Stress-induced decrease in TRAF2 stability is mediated by Siah2. EMBO J 21: 5756–5765.

    Article  CAS  Google Scholar 

  • House CM, Frew IJ, Huang HL, Wiche G, Traficante N, Nice E et al. (2003). A binding motif for Siah ubiquitin ligase. Proc Natl Acad Sci USA 100: 3101–3106.

    Article  CAS  Google Scholar 

  • Hu G, Chung YL, Glover T, Valentine V, Look AT, Fearon ER . (1997a). Characterization of human homologs of the Drosophila seven in absentia (sina) gene. Genomics 46: 103–111.

    Article  CAS  Google Scholar 

  • Hu G, Zhang S, Vidal M, Baer JL, Xu T, Fearon ER . (1997b). Mammalian homologs of seven in absentia regulate DCC via the ubiquitin-proteasome pathway. Genes Dev 11: 2701–2714.

    Article  CAS  Google Scholar 

  • Johnson ES, Gupta AA . (2001). An E3-like factor that promotes SUMO conjugation to the yeast septins. Cell 106: 735–744.

    Article  CAS  Google Scholar 

  • Kahyo T, Nishida T, Yasuda H . (2001). Involvement of PIAS1 in the sumoylation of tumor suppressor p53. Mol Cell 8: 713–718.

    Article  CAS  Google Scholar 

  • Kotaja N, Vihinen M, Palvimo JJ, Janne OA . (2002). Androgen receptor-interacting protein 3 and other PIAS proteins cooperate with glucocorticoid receptor-interacting protein 1 in steroid receptor-dependent signaling. J Biol Chem 277: 17781–17788.

    Article  CAS  Google Scholar 

  • Lallemand-Breitenbach V, Zhu J, Puvion F, Koken M, Honore N, Doubeikovsky A et al. (2001). Role of promyelocytic leukemia (PML) sumolation in nuclear body formation, 11S proteasome recruitment, and As2O3-induced PML or PML/retinoic acid receptor alpha degradation. J Exp Med 193: 1361–1371.

    Article  CAS  Google Scholar 

  • Liu B, Gross M, ten Hoeve J, Shuai K . (2001a). A transcriptional corepressor of Stat1 with an essential LXXLL signature motif. Proc Natl Acad Sci USA 98: 3203–3207.

    Article  CAS  Google Scholar 

  • Liu B, Liao J, Rao X, Kushner SA, Chung CD, Chang DD et al. (1998). Inhibition of Stat1-mediated gene activation by PIAS1. Proc Natl Acad Sci USA 95: 10626–10631.

    Article  CAS  Google Scholar 

  • Liu B, Shuai K . (2001). Induction of apoptosis by protein inhibitor of activated Stat1 through c-Jun NH2-terminal kinase activation. J Biol Chem 276: 36624–36631.

    Article  CAS  Google Scholar 

  • Liu J, Stevens J, Rote CA, Yost HJ, Hu Y, Neufeld KL et al. (2001b). Siah-1 mediates a novel beta-catenin degradation pathway linking p53 to the adenomatous polyposis coli protein. Mol Cell 7: 927–936.

    Article  CAS  Google Scholar 

  • Liu YC . (2004). Ubiquitin ligases and the immune response. Annu Rev Immunol 22: 81–127.

    Article  Google Scholar 

  • Matsuzawa SI, Reed JC . (2001). Siah-1, SIP, and Ebi collaborate in a novel pathway for beta-catenin degradation linked to p53 responses. Mol Cell 7: 915–926.

    Article  CAS  Google Scholar 

  • Megidish T, Xu JH, Xu CW . (2002). Activation of p53 by protein inhibitor of activated Stat1 (PIAS1). J Biol Chem 277: 8255–8259.

    Article  CAS  Google Scholar 

  • Melchior F . (2000). SUMO- non classical ubiquitin. Annu Rev Cell Dev Biol 16: 591–626.

    Article  CAS  Google Scholar 

  • Millot GA, Feger F, Garcon L, Vainchenker W, Dumenil D, Svinarchuk F . (2002). MplK, a natural variant of the thrombopoietin receptor with a truncated cytoplasmic domain, binds thrombopoietin but does not interfere with thrombopoietin-mediated cell growth. Exp Hematol 30: 166–175.

    Article  CAS  Google Scholar 

  • Muller S, Berger M, Lehembre F, Seeler JS, Haupt Y, Dejean A . (2000). c-Jun and p53 activity is modulated by SUMO-1 modification. J Biol Chem 275: 13321–13329.

    Article  CAS  Google Scholar 

  • Muller S, Matunis MJ, Dejean A . (1998). Conjugation with the ubiquitin-related modifier SUMO-1 regulates the partitioning of PML within the nucleus. EMBO J 17: 61–70.

    Article  CAS  Google Scholar 

  • Nakayama K, Ronai Z . (2004). Siah: new players in the cellular response to hypoxia. Cell Cycle 3: 1345–1347.

    Article  CAS  Google Scholar 

  • Polekhina G, House CM, Traficante N, Mackay JP, Relaix F, Sassoon DA et al. (2002). Siah ubiquitin ligase is structurally related to TRAF and modulates TNF-alpha signaling. Nat Struct Biol 9: 68–75.

    Article  CAS  Google Scholar 

  • Reed JC, Ely KR . (2002). Degrading liaisons: Siah structure revealed. Nat Struct Biol 9: 8–10.

    Article  CAS  Google Scholar 

  • Rodriguez MS, Desterro JM, Lain S, Midgley CA, Lane DP, Hay RT . (1999). SUMO-1 modification activates the transcriptional response of p53. EMBO J 18: 6455–6461.

    Article  CAS  Google Scholar 

  • Sachdev S, Bruhn L, Sieber H, Pichler A, Melchior F, Grosschedl R . (2001). PIASy, a nuclear matrix-associated SUMO E3 ligase, represses LEF1 activity by sequestration into nuclear bodies. Genes Dev 15: 3088–3103.

    Article  CAS  Google Scholar 

  • Schmidt D, Muller S . (2002). Members of the PIAS family act as SUMO ligases for c-Jun and p53 and repress p53 activity. Proc Natl Acad Sci USA 99: 2872–2877.

    Article  CAS  Google Scholar 

  • Shuai K, Liu B . (2005). Regulation of gene-activation pathways by PIAS proteins in the immune system. Nat Rev Immunol 5: 593–605.

    Article  CAS  Google Scholar 

  • Simon MC . (2004). Siah proteins, HIF prolyl hydroxylases, and the physiological response to hypoxia. Cell 117: 851–853.

    Article  CAS  Google Scholar 

  • Sun L, Chen ZJ . (2004). The novel functions of ubiquitination in signaling. Curr Opin Cell Biol 16: 119–126.

    Article  CAS  Google Scholar 

  • Susini L, Passer BJ, Amzallag-Elbaz N, Juven-Gershon T, Prieur S, Privat N et al. (2001). Siah-1 binds and regulates the function of Numb. Proc Natl Acad Sci USA 98: 15067–15072.

    Article  CAS  Google Scholar 

  • Tan JA, Hall SH, Hamil KG, Grossman G, Petrusz P, French FS . (2002). Protein inhibitors of activated STAT resemble scaffold attachment factors and function as interacting nuclear receptor coregulators. J Biol Chem 277: 16993–17001.

    Article  CAS  Google Scholar 

  • Tang AH, Neufeld TP, Kwan E, Rubin GM . (1997). PHYL acts to down-regulate TTK88, a transcriptional repressor of neuronal cell fates, by a SINA-dependent mechanism. Cell 90: 459–467.

    Article  CAS  Google Scholar 

  • Tanikawa J, Ichikawa-Iwata E, Kanei-Ishii C, Nakai A, Matsuzawa SI, Reed JC et al. (2000). p53 suppresses the c-Myb-induced activation of heat shock transcription factor 3. J Biol Chem 275: 15578–15585.

    Article  CAS  Google Scholar 

  • Weissman AM . (2001). Themes and variations on ubiquitylation. Nat Rev Mol Cell Biol 2: 169–178.

    Article  CAS  Google Scholar 

  • Yaron A, Gonen H, Alkalay I, Hatzubai A, Jung S, Beyth S et al. (1997). Inhibition of NF-kappa-B cellular function via specific targeting of the I-kappa-B-ubiquitin ligase. EMBO J 16: 6486–6494.

    Article  CAS  Google Scholar 

  • Yeh WC, Shahinian A, Speiser D, Kraunus J, Billia F, Wakeham A et al. (1997). Early lethality, functional NF-kappaB activation, and increased sensitivity to TNF-induced cell death in TRAF2-deficient mice. Immunity 7: 715–725.

    Article  CAS  Google Scholar 

  • Zhang J, Guenther MG, Carthew RW, Lazar MA . (1998). Proteasomal regulation of nuclear receptor corepressor-mediated repression. Genes Dev 12: 1775–1780.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

AD is the recipient of a fellowship from the Association pour la Recherche Contre le Cancer (ARC). This work is supported by grants from the ARC and La Ligue Nationale contre le Cancer (France). We acknowledge technical support provided in sequencing by F Letourneur's group (Cochin Institute).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N Varin-Blank.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Depaux, A., Regnier-Ricard, F., Germani, A. et al. A crosstalk between hSiah2 and Pias E3-ligases modulates Pias-dependent activation. Oncogene 26, 6665–6676 (2007). https://doi.org/10.1038/sj.onc.1210486

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210486

Keywords

This article is cited by

Search

Quick links