Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Estrogen receptor-positive mammary tumorigenesis in TGFα transgenic mice progresses with progesterone receptor loss

Abstract

We characterized the novel NRL-transforming growth factor alpha (NRL-TGFα) transgenic mouse model in which growth factor - steroid receptor interactions were explored. The NRL promoter directs transgene expression to mammary ductal and alveolar cells and is nonresponsive to estrogen manipulations in vitro and in vivo. NRL-TGFα mice acquire proliferative hyperplasias as well as cystic and solid tumors. Quantitative transcript analysis revealed a progressive decrease in estrogen receptor alpha (ER) and progesterone receptor (PR) mRNA levels with tumorigenesis. However, ER protein was evident in all lesion types and in surrounding stromal cells using immunohistochemistry. PR protein was identified in normal epithelial cells and in very few cells of small epithelial hyperplasias, but never in stromal or tumor cells. Prophylactic ovariectomy significantly delayed tumor development and decreased incidence. Finally, while heterozygous (+/−) p53 mice did not acquire mammary lesions, p53+/− mice carrying the NRL-TGFα transgene developed ER negative/PR negative undifferentiated carcinomas. These data demonstrate that unregulated TGFα expression in the mammary gland leads to oncogenesis that is dependent on ovarian steroids early in tumorigenesis. Resulting tumors resemble a clinical phenotype of ER+/PR−, and when combined with a heterozygous p53 genotype, ER−/PR−.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Adan RA, Cox JJ, van Kats JP, Burbach JP . (1992). Thyroid hormone regulates the oxytocin gene. J Biol Chem 267: 3771–3777.

    CAS  PubMed  Google Scholar 

  • Amundadottir LT, Johnson MD, Merlino G, Smith GH, Dickson RB . (1995). Synergistic interaction of transforming growth factor alpha and c-myc in mouse mammary and salivary gland tumorigenesis. Cell Growth Differ 6: 737–748.

    CAS  PubMed  Google Scholar 

  • Arendt LM, Rose-Hellekant TA, Sandgren EP, Schuler LA . (2006). Prolactin potentiates transforming growth factor alpha induction of mammary neoplasia in transgenic mice. Am J Pathol 168: 1365–1374.

    Article  CAS  Google Scholar 

  • Arpino G, Weiss H, Lee AV, Schiff R, De Placido S, Osborne CK et al. (2005). Estrogen receptor-positive, progesterone receptor-negative breast cancer: association with growth factor receptor expression and tamoxifen resistance. J Natl Cancer Inst 97: 1254–1261.

    Article  CAS  Google Scholar 

  • Bieche I, Onody P, Tozlu S, Driouch K, Vidaud M, Lidereau R . (2003). Prognostic value of ERBB family mRNA expression in breast carcinomas. Int J Cancer 106: 758–765.

    Article  CAS  Google Scholar 

  • Blackburn AC, Brown JS, Naber SP, Otis CN, Wood JT, Jerry DJ . (2003). BALB/c alleles for Prkdc and Cdkn2a interact to modify tumor susceptibility in Trp53+/− mice. Cancer Res 63: 2364–2368.

    CAS  PubMed  Google Scholar 

  • Blackburn AC, Jerry DJ . (2002). Knockout and transgenic mice of Trp53: what have we learned about p53 in breast cancer. Breast Cancer Res 4: 101–111.

    Article  CAS  Google Scholar 

  • Brinster RL, Chen HY, Trumbauer ME, Yagle MK, Palmiter RD . (1985). Factors affecting the efficiency of introducing foreign DNA into mice by microinjecting eggs. Proc Natl Acad Sci USA 82: 4438–4442.

    Article  CAS  Google Scholar 

  • Creighton CJ, Hilger AM, Murthy S, Rae JM, Chinnaiyan AM, El-Ashry D . (2006). Activation of mitogen-activated protein kinase in estrogen receptor alpha-positive breast cancer cells in vitro induces an in vivo molecular phenotype of estrogen receptor alpha-negative human breast tumors. Cancer Res 66: 3903–3911.

    Article  CAS  Google Scholar 

  • Gee JM, Robertson JF, Gutteridge E, Ellis IO, Pinder SE, Rubini M et al. (2005). Epidermal growth factor receptor/HER2/insulin-like growth factor receptor signalling and oestrogen receptor activity in clinical breast cancer. Endocr Relat Cancer 12 (Suppl. 1): S99–S111.

    Article  CAS  Google Scholar 

  • Green S, Issemann I, Sheer E . (1988). A versatile in vivo and in vitro eukaryotic expression vector for protein engineering. Nucl Acids Res 16: 369.

    Article  CAS  Google Scholar 

  • Grippo PJ, Sandgren EP . (2000). Highly invasive transitional cell carcinoma of the bladder in a simian virus 40 T-antigen transgenic mouse model. Am J Pathol 157: 805–813.

    Article  CAS  Google Scholar 

  • Gunther EJ, Belka GK, Wertheim GB, Wang J, Hartman JL, Boxer RB et al. (2002). A novel doxycycline-inducible system for the transgenic analysis of mammary gland biology. FASEB J 16: 283–292.

    Article  CAS  Google Scholar 

  • Gururaj AE, Rayala SK, Vadlamudi RK, Kumar R . (2006). Novel mechanisms of resistance to endocrine therapy: genomic and nongenomic considerations. Clin Cancer Res 12: 1001s–1007s.

    Article  CAS  Google Scholar 

  • Gutzman JH, Nikolai SE, Rugowski DE, Watters JJ, Schuler LA . (2005). Prolactin and estrogen enhance the activity of activating protein 1 in breast cancer cells: role of extracellularly regulated kinase 1/2-mediated signals to c-fos. Mol Endocrinol 19: 1765–1778.

    Article  CAS  Google Scholar 

  • Hewitt SC, Bocchinfuso WP, Zhai J, Harrell C, Koonce L, Clark J et al. (2002). Lack of ductal development in the absence of functional estrogen receptor alpha delays mammary tumor formation induced by transgenic expression of ErbB2/neu. Cancer Res 62: 2798–2805.

    CAS  PubMed  Google Scholar 

  • Holbro T, Civenni G, Hynes NE . (2003). The ErbB receptors and their role in cancer progression. Exp Cell Res 284: 99–110.

    Article  CAS  Google Scholar 

  • Humphreys RC, Hennighausen L . (2000). Transforming growth factor alpha and mouse models of human breast cancer. Oncogene 19: 1085–1091.

    Article  CAS  Google Scholar 

  • Jacks T, Remington L, Williams BO, Schmitt EM, Halachmi S, Bronson RT et al. (1994). Tumor spectrum analysis in p53-mutant mice. Curr Biol 4: 1–7.

    Article  CAS  Google Scholar 

  • Jerry DJ, Kittrell FS, Kuperwasser C, Laucirica R, Dickinson ES, Bonilla PJ et al. (2000). A mammary-specific model demonstrates the role of the p53 tumor suppressor gene in tumor development. Oncogene 19: 1052–1058.

    Article  CAS  Google Scholar 

  • Kisseberth WC, Brettingen NT, Lohse JK, Sandgren EP . (1999). Ubiquitous expression of marker transgenes in mice and rats. Dev Biol 214: 128–138.

    Article  CAS  Google Scholar 

  • Kuperwasser C, Hurlbut GD, Kittrell FS, Dickinson ES, Laucirica R, Medina D et al. (2000). Development of spontaneous mammary tumors in BALB/c p53 heterozygous mice. A model for Li-Fraumeni syndrome. Am J Pathol 157: 2151–2159.

    Article  CAS  Google Scholar 

  • Lee S, Mohsin SK, Mao S, Hilsenbeck SG, Medina D, Allred DC . (2006). Hormones, receptors, and growth in hyperplastic enlarged lobular units: early potential precursors of breast cancer. Breast Cancer Res 8: R6.

    Article  Google Scholar 

  • Livak KJ, Schmittgen TD . (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods 25: 402–408.

    Article  CAS  Google Scholar 

  • Medina D, Kittrell FS . (2003). p53 function is required for hormone-mediated protection of mouse mammary tumorigenesis. Cancer Res 63: 6140–6143.

    CAS  PubMed  Google Scholar 

  • Otten AD, Sanders MM, McKnight GS . (1988). The MMTV LTR promoter is induced by progesterone and dihydrotestosterone but not by estrogen. Mol Endocrinol 2: 143–147.

    Article  CAS  Google Scholar 

  • Pfaffl MW, Horgan GW, Dempfle L . (2002). Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 30: e36.

    Article  Google Scholar 

  • Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP . (2004). Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper – Excel-based tool using pair-wise correlations. Biotechnol Lett 26: 509–515.

    Article  CAS  Google Scholar 

  • Pierson-Mullany LK, Skildum A, Faivre E, Lange CA . (2003). Cross-talk between growth factor and progesterone receptor signaling pathways: implications for breast cancer cell growth. Breast Dis 18: 21–31.

    Article  CAS  Google Scholar 

  • Robinson GW, McKnight RA, Smith GH, Hennighausen L . (1995). Mammary epithelial cells undergo secretory differentiation in cycling virgins but require pregnancy for the establishment of terminal differentiation. Development 121: 2079–2090.

    CAS  PubMed  Google Scholar 

  • Rose-Hellekant TA, Arendt LM, Schroeder MD, Gilchrist K, Sandgren EP, Schuler LA . (2003). Prolactin induces ERalpha-positive and ERalpha-negative mammary cancer in transgenic mice. Oncogene 22: 4664–4674.

    Article  CAS  Google Scholar 

  • Rose-Hellekant TA, Gilchrist K, Sandgren EP . (2002). Strain background alters mammary gland lesion phenotype in transforming growth factor-alpha transgenic mice. Am J Pathol 161: 1439–1447.

    Article  CAS  Google Scholar 

  • Rose-Hellekant TA, Sandgren EP . (2000). Transforming growth factor alpha- and c-myc-induced mammary carcinogenesis in transgenic mice. Oncogene 19: 1092–1096.

    Article  CAS  Google Scholar 

  • Rudland PS, Fernig DG, Smith JA . (1995). Growth factors and their receptors in neoplastic mammary glands. Biomed Pharmacother 49: 389–399.

    Article  CAS  Google Scholar 

  • Sandgren EP, Luetteke NC, Palmiter RD, Brinster RL, Lee DC . (1990). Overexpression of TGF alpha in transgenic mice: induction of epithelial hyperplasia, pancreatic metaplasia, and carcinoma of the breast. Cell 61: 1121–1135.

    Article  CAS  Google Scholar 

  • Sandgren EP, Schroeder JA, Qui TH, Palmiter RD, Brinster RL, Lee DC . (1995). Inhibition of mammary gland involution is associated with transforming growth factor alpha but not c-myc-induced tumorigenesis in transgenic mice. Cancer Res 55: 3915–3927.

    CAS  PubMed  Google Scholar 

  • Stoesz SP, Gould MN . (1995). Overexpression of neu-related lipocalin (NRL) in neu-initiated but not ras or chemically initiated rat mammary carcinomas. Oncogene 11: 2233–2241.

    CAS  PubMed  Google Scholar 

  • Zhang X, Podsypanina K, Huang S, Mohsin SK, Chamness GC, Hatsell S et al. (2005). Estrogen receptor positivity in mammary tumors of Wnt-1 transgenic mice is influenced by collaborating oncogenic mutations. Oncogene 24: 4220–4231.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors greatly appreciate the assistance of Dr Donald Kundel, MD for histopathology evaluations, and Dr Lisa Arendt for critical manuscript reading. We also thank Chinghai Kao for graciously providing the PgRE construct. This work was supported by NIH grant K01-RR00145, University of Minnesota Medical Foundation (TARH), R01-CA64843 (EPS), R01-CA78312 (LAS), R01-CA58328 (MNG) and ES09090.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T A Rose-Hellekant.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rose-Hellekant, T., Schroeder, M., Brockman, J. et al. Estrogen receptor-positive mammary tumorigenesis in TGFα transgenic mice progresses with progesterone receptor loss. Oncogene 26, 5238–5246 (2007). https://doi.org/10.1038/sj.onc.1210340

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210340

Keywords

This article is cited by

Search

Quick links