Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Interactions of mutant p53 with DNA: guilt by association

Abstract

Since the very early days of p53 research, the gain of oncogenic activities by some mutant p53 proteins had been suspected as an important factor contributing to cancer progression. Considerable progress towards understanding the biology of mutant p53 has been made during the last years, the quintessence being the realization that the impact of mutant p53 proteins on the transcriptome of a tumor cell is much more global than previously thought. The emerging role of mutant p53 proteins in coordinating oncogenic signaling and chromatin modifying activities reveals an until now unsuspected function of these proteins as important modifiers of the oncogenic transcriptional response. Notwithstanding the fact that the sequence-specific DNA binding activity of mutant p53 proteins is impaired, they are still able to associate with specific loci on DNA by utilizing different mechanisms. The ability to associate with DNA appears to be crucial for the master role of mutant p53 proteins in coordinating oncogenic transcriptional responses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  • Ahn J, Prives C . (2001). The C-terminus of p53: the more you learn the less you know. Nat Struct Biol 8: 730–732.

    Article  CAS  Google Scholar 

  • Ang HC, Joerger AC, Mayer S, Fersht AR . (2006). Effects of common cancer mutations on stability and DNA binding of full-length p53 compared with isolated core domains. J Biol Chem 281: 21934–21941.

    Article  CAS  Google Scholar 

  • Bae BI, Xu H, Igarashi S, Fujimuro M, Agrawal N, Taya Y et al. (2005). p53 mediates cellular dysfunction and behavioral abnormalities in Huntington's disease. Neuron 47: 29–41.

    Article  CAS  Google Scholar 

  • Campomenosi P, Monti P, Aprile A, Abbondandolo A, Frebourg T, Gold B et al. (2001). p53 mutants can often transactivate promoters containing a p21 but not Bax or PIG3 responsive elements. Oncogene 20: 3573–3579.

    Article  CAS  Google Scholar 

  • Chicas A, Molina P, Bargonetti J . (2000). Mutant p53 forms a complex with Sp1 on HIV-LTR DNA. Biochem Biophys Res Commun 279: 383–390.

    Article  CAS  Google Scholar 

  • Cho Y, Gorina S, Jeffrey PD, Pavletich NP . (1994). Crystal structure of a p53 tumor suppressor-DNA complex: Understanding tumorigenic mutations. Science 265: 346–355.

    Article  CAS  Google Scholar 

  • Di Agostino S, Strano S, Emiliozzi V, Zerbini V, Mottolese M, Sacchi A et al. (2006). Gain of function of mutant p53: the mutant p53/NF-Y protein complex reveals an aberrant transcriptional mechanism of cell cycle regulation. Cancer Cell 10: 191–202.

    Article  CAS  Google Scholar 

  • El-Deiry WS, Kern SE, Pietenpol JA, Kinzler KW, Vogelstein B . (1992). Definition of a consensus binding site for p53. Nat Genet 1: 45–49.

    Article  CAS  Google Scholar 

  • Feng Z, Jin S, Zupnick A, Hoh J, de Stanchina E, Lowe S et al. (2006). p53 tumor suppressor protein regulates the levels of huntingtin gene expression. Oncogene 25: 1–7.

    Article  Google Scholar 

  • Frazier MW, He XP, Wang JL, Gu ZM, Cleveland JL, Zambetti GP . (1998). Activation of c-myc gene expression by tumor-derived p53 mutants requires a discrete C-terminal domain. Mol Cell Biol 18: 3735–3743.

    Article  CAS  Google Scholar 

  • Gilliland DG . (2001). The diverse role of the ETS family of transcription factors in cancer. Clin Cancer Res 7: 451–453.

    CAS  PubMed  Google Scholar 

  • Göhler T, Jager S, Warnecke G, Yasuda H, Kim E, Deppert W . (2005). Mutant p53 proteins bind DNA in a DNA structure-selective mode. Nucleic Acids Res 33: 1087–1100.

    Article  Google Scholar 

  • Göhler T, Reimann M, Cherny D, Walter K, Warnecke G, Kim E et al. (2002). Specific interaction of p53 with target binding sites is determined by DNA conformation and is regulated by the C-terminal domain. J Biol Chem 277: 41192–41203.

    Article  Google Scholar 

  • Gu L, Zhu N, Findley HW, Woods WG, Zhou M . (2004). Identification and characterization of the IKKalpha promoter: positive and negative regulation by ETS-1 and p53, respectively. J Biol Chem 279: 52141–52149.

    Article  CAS  Google Scholar 

  • Gu Z, Kuntz-Simon G, Rommelaere J, Cornelis J . (1999). Oncogenic transformation-dependent expression of a transcription factor NF-Y subunit. Mol Carcinog 24: 294–299.

    Article  CAS  Google Scholar 

  • Gualberto A, Hixon ML, Finco TS, Perkins ND, Nabel GJ, Baldwin Jr AS . (1995). A proliferative p53-responsive element mediates tumor necrosis factor alpha induction of the human immunodeficiency virus type 1 long terminal repeat. Mol Cell Biol 15: 3450–3459.

    Article  CAS  Google Scholar 

  • Hupp TR, Lane DP . (1994). Regulation of the cryptic sequence-specific DNA-binding function of p53 by protein kinases. Cold Spring Harbor Symp Quant Biol 59: 195–206.

    Article  CAS  Google Scholar 

  • Imbriano C, Gurtner A, Cocchiarella F, Di Agostino S, Basile V, Gostissa M et al. (2005). Direct p53 transcriptional repression: in vivo analysis of CCAAT-containing G2/M promoters. Mol Cell Biol 25: 3737–3751.

    Article  CAS  Google Scholar 

  • Inga A, Monti P, Fronza G, Darden T, Resnick MA . (2001). p53 mutants exhibiting enhanced transcriptional activation and altered promoter selectivity are revealed using a sensitive, yeast-based functional assay. Oncogene 20: 501–513.

    Article  CAS  Google Scholar 

  • Joerger AC, Fersht AR . (2007). Structure – function – rescue: the diverse nature of common p53 cancer mutants. Oncogene doi:10.1038/sj.onc.1210312.

    Article  CAS  Google Scholar 

  • Joerger AC, Ang HC, Fersht AR . (2006). Structural basis for understanding oncogenic p53 mutations and designing rescue drugs. Proc Natl Acad Sci USA 103: 15056–15061.

    Article  CAS  Google Scholar 

  • Kim E, Deppert W . (2003). The complex interactions of p53 with target DNA: we learn as we go. Biochem Cell Biol 81: 141–150.

    Article  CAS  Google Scholar 

  • Kim E, Deppert W . (2004). Transcriptional activities of mutant p53: when mutations are more than a loss. J Cell Biochem 93: 878–886.

    Article  CAS  Google Scholar 

  • Kim E, Gunther W, Yoshizato K, Meissner H, Zapf S, Nusing RM et al. (2003). Tumor suppressor p53 inhibits transcriptional activation of invasion gene thromboxane synthase mediated by the proto-oncogenic factor ets-1. Oncogene 22: 7716–7727.

    Article  CAS  Google Scholar 

  • Koga H, Deppert W . (2000). Identification of genomic dna sequences bound by mutant p53 protein (Gly245->Ser) in vivo. Oncogene 19: 4178–4183.

    Article  CAS  Google Scholar 

  • Koutsodontis G, Vasilaki E, Chou WC, Papakosta P, Kardassis D . (2005). Physical and functional interactions between members of the tumour suppressor p53 and the Sp families of transcription factors: importance for the regulation of genes involved in cell-cycle arrest and apoptosis. Biochem J 389: 443–455.

    Article  CAS  Google Scholar 

  • Lachner M, O'Carroll D, Rea S, Mechtler K, Jenuwein T . (2001). Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 410: 116–120.

    Article  CAS  Google Scholar 

  • Menendez D, Inga A, Jordan A, Resnick MA . (2007). Changing the p53 master regulatory network: ELEMENTary, my dear Mr.Watson. Oncogene (this issue).

  • Müller BF, Paulsen D, Deppert W . (1996). Specific binding of MAR/SAR DNA-elements by mutant p53. Oncogene 12: 1941–1952.

    PubMed  Google Scholar 

  • Nguyen TT, Cho K, Stratton SA, Barton MC . (2005). Transcription factor interactions and chromatin modifications associated with p53-mediated, developmental repression of the alpha-fetoprotein gene. Mol Cell Biol 25: 2147–2157.

    Article  CAS  Google Scholar 

  • Oikawa T . (2004). ETS transcription factors: possible targets for cancer therapy. Cancer Sci 95: 626–633.

    Article  CAS  Google Scholar 

  • Okorokov AL, Sherman MB, Plisson C, Grinkevich V, Sigmundsson K, Selivanova G et al. (2006). The structure of p53 tumour suppressor protein reveals the basis for its functional plasticity. EMBO J 25: 5191–5200.

    Article  CAS  Google Scholar 

  • Pang JH, Good LF, Chen KY . (1996). The age-dependent binding of CBP/tk, a CCAAT binding protein, is deregulated in transformed and immortalized mammalian cells but absent in premature aging cells. Exp Gerontol 31: 97–109.

    Article  CAS  Google Scholar 

  • Pastorcic M, Das HK . (2000). Regulation of transcription of the human presenilin-1 gene by ets transcription factors and the p53 protooncogene. J Biol Chem 275: 34938–34945.

    Article  CAS  Google Scholar 

  • Sampath J, Sun DX, Kidd VJ, Grenet J, Gandhi A, Shapiro LH et al. (2001). Mutant p53 cooperates with ETS and selectively up-regulates human MDR1 not MRP1. J Biol Chem 276: 39359–39367.

    Article  CAS  Google Scholar 

  • Saveliev A, Everett C, Sharpe T, Webster Z, Festenstein R . (2003). DNA triplet repeats mediate heterochromatin-protein-1-sensitive variegated gene silencing. Nature 422: 909–913.

    Article  CAS  Google Scholar 

  • Scian MJ, Stagliano KE, Anderson MA, Hassan S, Bowman M, Miles MF et al. (2005). Tumor-derived p53 mutants induce NF-kappaB2 gene expression. Mol Cell Biol 25: 10097–10110.

    Article  CAS  Google Scholar 

  • Scian MJ, Stagliano KE, Ellis MA, Hassan S, Bowman M, Miles MF et al. (2004). Modulation of gene expression by tumor-derived p53 mutants. Cancer Res 64: 7447–7454.

    Article  CAS  Google Scholar 

  • Selivanova G, Iotsova V, Okan I, Fritsche M, Stroem M, Groner B et al. (1997). Restoration of the growth suppression function of mutant p53 by a synthetic peptide derived from the p53 C-terminal domain. Nature Med 3: 632–638.

    Article  CAS  Google Scholar 

  • Sigal A, Rotter V . (2000). Oncogenic mutations of the p53 tumor suppressor: The demons of the guardian of the genome. Cancer Res 60: 6788–6793.

    CAS  PubMed  Google Scholar 

  • Sinden RR, Potaman VN, Oussatcheva EA, Pearson CE, Lyubchenko YL, Shlyakhtenko LS . (2002). Triplet repeat DNA structures and human genetic disease: dynamic mutations from dynamic DNA. J Biosci 27: 53–65.

    Article  CAS  Google Scholar 

  • Stenger EJ, Tegtmeyer P, Mayr GA, Reed M, Wang Y, Wang P et al. (1994). p53 oligomerization and DNA looping are linked with transcriptional activation. EMBO J 13: 6011–6020.

    Article  CAS  Google Scholar 

  • Strano S, Dell'Orso S, DiAgostino S, Fontemaggi G, Sacchi A, Blandino G . (2007). Mutant p53: an oncogenic transcription factor. Oncogene (this issue).

  • Tsutsumi-Ishii Y, Tadokoro K, Hanaoka F, Tsuchida N . (1995). Response of heat shock element within the human HSP70 promoter to mutated p53 genes. Cell Growth Differ 6: 1–8.

    CAS  PubMed  Google Scholar 

  • Walter K, Warnecke G, Bowater R, Deppert W, Kim EL . (2005). Tumor suppressor p53 binds with high affinity to CTG-CAG trinucleotide repeats and induces topological alterations in mismatched duplexes. J Biol Chem 280: 42497–42507.

    Article  CAS  Google Scholar 

  • Wang YH, Griffith J . (1995). Expanded CTG triplet blocks from the myotonic dystrophy gene create the strongest known natural nucleosome positioning elements. Genomics 25: 570–573.

    Article  CAS  Google Scholar 

  • Weißker S, Müller B, Homfeld A, Deppert W . (1992). Specific and complex interactions of murine p53 with DNA. Oncogene 7: 1921–1932.

    PubMed  Google Scholar 

  • Yang X, Pater A, Tang SC . (1999). Cloning and characterization of the human BAG-1 gene promoter: upregulation by tumor-derived p53 mutants. Oncogene 18: 4546–4553.

    Article  CAS  Google Scholar 

  • Zalcenstein A, Stambolsky P, Weisz L, Muller M, Wallach D, Goncharov TM et al. (2003). Mutant p53 gain of function: repression of CD95(Fas/APO-1) gene expression by tumor-associated p53 mutants. Oncogene 22: 5667–5676.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Martina Hintz-Malchow for assistance in preparing the manuscript. Research performed in the WD and EK laboratories and cited in this review was supported by the DFG (De 212/19-5), the Fonds der Chemischen Industrie, and by EC FP5 and FP6 funding. The publication reflects only the authors' views and the Community is not liable for any use that may be made of the information contained therein. The Heinrich-Pette-Institut is financially supported by the Freie und Hansesstadt Hamburg and the Bundesministerium für Gesundheit.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, E., Deppert, W. Interactions of mutant p53 with DNA: guilt by association. Oncogene 26, 2185–2190 (2007). https://doi.org/10.1038/sj.onc.1210312

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210312

Keywords

This article is cited by

Search

Quick links