Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Wnt signalling and the actin cytoskeleton

Abstract

The tumour suppressor adenomatous polyposis coli (APC) is mutated in sporadic and familial colorectal tumours. APC binds to β-catenin, a key component of the Wnt signalling pathway, and induces its degradation. In addition to this role, there is increasing evidence for additional roles of APC, including the organization of cytoskeletal networks. APC interacts with microtubules and accumulates at their plus ends in membrane protrusions. Also, it has been reported that APC is associated with the plasma membrane in an actin-dependent manner. Moreover, APC interacts with IQGAP1, an effector of Rac1 and Cdc42, and APC-stimulated guanine nucleotide exchange factor (Asef), a Rac1-specific guanine nucleotide exchange factor (GEF). IQGAP1 mediates association of APC with cortical actin in the leading edge of migrating cell and both proteins are required for cell polarization and directional migration. APC interacts with Asef and stimulates its activity, thereby regulating the actin cytoskeletal network, cell morphology, adhesion and migration. Truncated mutant APCs present in colorectal tumour cells activate Asef constitutively and contribute to their aberrant migratory properties, which may be important for adenoma formation as well as tumour progression to invasive malignancy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Askham JM, Moncur P, Markham AF, Morrison EE . (2000). Regulation and function of the interaction between the APC tumour suppressor protein and EB1. Oncogene 19: 1950–1958.

    Article  CAS  Google Scholar 

  • Bashour A-M, Fullerton AT, Hart MJ, Bloom GS . (1997). IQGAP1, a Rac- and Cdc42-binding protein, directly binds and cross-links microfilaments. J Cell Biol 37: 1555–1566.

    Article  Google Scholar 

  • Bienz M . (2002). The subcellular destinations of APC proteins. Nat Rev Mol Cell Biol 3: 328–338.

    Article  CAS  Google Scholar 

  • Bienz M, Clevers H . (2000). Linking colorectal cancer to Wnt signaling. Cell 103: 311–320.

    Article  CAS  Google Scholar 

  • Bienz M, Hamada F . (2004). Adenomatous polyposis coli proteins and cell adhesion. Curr Opin Cell Biol 16: 528–535.

    Article  CAS  Google Scholar 

  • Braga VMM, Betson M, Li X, Lamarche-Vane N . (2000). Activation of the small GTPase Rac is sufficient to disrupt cadherin-dependent cell–cell adhesion in normal human keratinocytes. Mol Biol Cell 11: 3703–3721.

    Article  CAS  Google Scholar 

  • Briggs MW, Sacks DB . (2003). IQGAP1 as signal integrator: Ca2+, calmodulin, Cdc42 and the cytoskeleton. FEBS Lett 542: 7–11.

    Article  CAS  Google Scholar 

  • Brocardo M, Nathke IS, Henderson BR . (2005). Redefining the subcellular location and transport of APC: new insights using a panel of antibodies. EMBO Rep 6: 184–190.

    Article  CAS  Google Scholar 

  • Cadigan KM, Nusse R . (1997). Wnt signaling: a common theme in animal development. Genes Dev 11: 3052–3286.

    Article  Google Scholar 

  • Etienne-Manneville S, Hall A . (2003). Cdc42 regulates GSK-3β and adenomatous polyposis coli to control cell polarity. Nature 421: 753–756.

    Article  CAS  Google Scholar 

  • Etienne-Manneville S, Manneville J-B, Nicholls S, Ferenczi MA, Hall A . (2005). Cdc42 and Par6-PKCzeta regulate the spatially localized association of Dlg1 and APC to control cell polarization. J Cell Biol 170: 895–901.

    Article  CAS  Google Scholar 

  • Faux MC, Ross JL, Meeker C, Johns T, Ji H, Simpson RJ et al. (2004). Restoration of full-length adenomatous polyposis coli (APC) protein in a colon cancer cell line enhances cell adhesion. J Cell Sci 117: 427–439.

    Article  CAS  Google Scholar 

  • Fodde R, Smits R, Clevers H . (2001). APC, signal transduction and genetic instability in colorectal cancer. Nat Rev Cancer 1: 55–67.

    Article  CAS  Google Scholar 

  • Fukuta M, Watanabe T, Noritake J, Nakagawa M, Yamaga M, Kuroda S et al. (2002). Rac1 and Cdc42 capture microtubules through IQGAP1 and CLIP-170. Cell 109: 873–885.

    Article  Google Scholar 

  • Hordijk PL, ten Klooster JP, van der Kammen RA, Michiels F, Oomen LC, Collard JG . (1997). Inhibition of invasion of epithelial cells by Tiam1-Rac signaling. Science 278: 1464–1466.

    Article  CAS  Google Scholar 

  • Jimbo T, Kawasaki Y, Koyama R, Sato R, Takada S, Haraguchi K et al. (2002). Identification of a link between the tumour suppressor APC and the kinesin superfamily. Nat Cell Biol 4: 323–327.

    Article  CAS  Google Scholar 

  • Kawasaki Y, Sato R, Akiyama T . (2003). Mutated APC and Asef are involved in the migration of colorectal tumour cells. Nat Cell Biol 5: 211–215.

    Article  CAS  Google Scholar 

  • Kawasaki Y, Senda T, Ishidate T, Koyama R, Morishita T, Iwayama Y et al. (2000). Asef, a link between the tumor suppressor APC and G-protein signaling. Science 289: 1194–1197.

    Article  CAS  Google Scholar 

  • Keely PJ, Westwick JK, Whitehead IP, Der CJ, Parise LV . (1997). Cdc42 and Rac1 induce integrin-mediated cell motility and invasiveness through PI(3)K. Nature 390: 632–636.

    Article  CAS  Google Scholar 

  • Langford KJ, Askham JM, Lee T, Adams M, Morrison EE . (2006). Examination of actin and microtubule dependent APC localisations in living mammalian cells. BMC Cell Biol 7: 3.

    Article  Google Scholar 

  • Mateer SC, Wang N, Bloom GS . (2003). IQGAPs: integrators of the cytoskeleton, cell adhesion machinery, and signaling networks. Cell Motil Cytoskeleton 55: 147–155.

    Article  CAS  Google Scholar 

  • Matsumine A, Ogai A, Senda T, Okumura N, Satoh K, Baeg G-H et al. (1996). Binding of APC to the human homolog of the Drosophila discs large tumor suppressor protein. Science 272: 1020–1023.

    Article  CAS  Google Scholar 

  • McCartney BM, Peifer M . (2000). Teaching tumour suppressors new tricks. Nat Cell Biol 2: E58–E60.

    Article  CAS  Google Scholar 

  • McCartney BM, Price MH, Webb RL, Hayden MA, Holot LM, Zhou M et al. (2006). Testing hypotheses for the functions of APC family proteins using null and truncation alleles in Drosophila. Development 133: 2407–2418.

    Article  CAS  Google Scholar 

  • Miki H, Okada Y, Hirokawa N . (2005). Analysis of the kinesin superfamily: insights into structure and function. Trends Cell Biol 15: 467–476.

    Article  CAS  Google Scholar 

  • Mimori-Kiyosue Y, Shiina N, Tsukita S . (2000a). The dynamic behavior of the APC-binding protein EB1 on the distal ends of microtubules. Curr Biol 10: 865–868.

    Article  CAS  Google Scholar 

  • Mimori-Kiyosue Y, Shiina N, Tsukita S . (2000b). Adenomatous polyposis coli (APC) protein moves along microtubules and concentrates at their growing ends in epithelial cells. J Cell Biol 148: 505–518.

    Article  CAS  Google Scholar 

  • Miyashiro I, Senda T, Matsumine A, Baeg G-H, Kuroda T, Shimano T et al. (1995). Subcellular localization of the APC protein: immunoelectron microscopic study of the association of the APC protein with catenin. Oncogene 11: 89–96.

    CAS  PubMed  Google Scholar 

  • Munemitsu S, Souza B, Muller O, Albert I, Rubinfeld B, Polakis P . (1994). The APC gene product associates with microtubules in vivo and promotes their assembly in vitro. Cancer Res 54: 3676–3681.

    CAS  PubMed  Google Scholar 

  • Nathke IS, Adams CL, Polakis P, Sellin JH, Nelson WJ . (1996). The adenomatous polyposis coli tumor suppressor protein localizes to plasma membrane sites involved in active cell migration. J Cell Biol 134: 165–179.

    Article  CAS  Google Scholar 

  • Oshima H, Oshima M, Kobayashi M, Tsutsumi M, Taketo MM . (1997). Morphological and molecular processes of polyp formation in Apc (delta716) knockout mice. Cancer Res 57: 1644–1649.

    CAS  PubMed  Google Scholar 

  • Polakis P . (2000). Wnt signaling and cancer. Genes Dev 14: 1837–1851.

    CAS  PubMed  Google Scholar 

  • Reilein WJ, Nelson WJ . (2005). APC is a component of an organizing template for cortical microtubule networks. Nat Cell Biol 7: 463–473.

    Article  CAS  Google Scholar 

  • Rosin-Arbesfeld R, Ihrke G, Bienz M . (2001). Actin-dependent membrane association of the APC tumour suppressor in polarized mammalian epithelial cells. EMBO J 20: 5929–5939.

    Article  CAS  Google Scholar 

  • Samowitz WS, Powers MD, Spirio LN, Nollet F, van Roy F, Slattery ML . (1999). Beta-catenin mutations are more frequent in small colorectal adenomas than in larger adenomas and invasive carcinomas. Cancer Res 59: 1442–1444.

    CAS  PubMed  Google Scholar 

  • Sander EE, van Delft S, ten Klooster JP, Reid T, van der Kammen RA, Michiels F et al. (1998). Matrix-dependent Tiam1/Rac signaling in epithelial cells promotes either cell–cell adhesion or cell migration and is regulated by phosphatidylinositol 3-kinase. J Cell Biol 143: 1385–1398.

    Article  CAS  Google Scholar 

  • Sansom OJ, Reed KR, Hayes AJ, Ireland H, Brinkmann H, Newton IP et al. (2004). Loss of Apc in vivo immediately perturbs Wnt signaling, differentiation, and migration. Genes Dev 18: 1385–1390.

    Article  CAS  Google Scholar 

  • Scholey JM . (1996). Kinesin-II, a membrane traffic motor in axons, axonemes, and spindles. J Cell Biol 133: 1–4.

    Article  CAS  Google Scholar 

  • Sharma M, Leung L, Bocardo M, Henderson J, Flegg C, Henderson BR . (2006). Membrane localization of adenomatous polyposis coli protein at cellular protrusions: targeting sequences and regulation by β-catenin. J Biol Chem 281: 17140–17149.

    Article  CAS  Google Scholar 

  • Su LK, Burrell M, Hill DE, Gyrus J, Brent R, Wiltshire R et al. (1995). APC binds to the novel protein EB1. Cancer Res 55: 2972–2977.

    CAS  PubMed  Google Scholar 

  • Takaishi K, Sasaki T, Kotani H, Nishioka H, Takai Y . (1997). Regulation of cell–cell adhesion by Rac and Rho small G proteins in MDCK cells. J Cell Biol 139: 1047–1059.

    Article  CAS  Google Scholar 

  • Watanabe T, Wang S, Noritake J, Sato K, Fukuta M, Takefuji M et al. (2005). Interaction with IQGAP1 links APC to Rac1, Cdc42, and actin filaments during cell polarization and migration. Dev Cell 7: 871–883.

    Article  Google Scholar 

  • Wen Y, Eng CH, Schmoranzer J, Cabrera-Poch N, Morris EJ, Chen M et al. (2004). EB1 and APC bind to mDia to stabilize microtubules downstream of Rho and promote cell migration. Nat Cell Biol 6: 820–830.

    Article  CAS  Google Scholar 

  • Wong MH, Hermiston ML, Syder AJ, Gordon JI . (1996). Forced expression of the tumor suppressor adenomatous polyposis coli protein induces disordered cell migration in the intestinal epithelium. Proc Natl Acad Sci USA 93: 9588–9593.

    Article  CAS  Google Scholar 

  • Zumbrunn J, Kinoshita K, Hyman AA, Nathke IS . (2001). Binding of the adenomatous polyposis coli protein to microtubules increases microtubule stability and is regulated by GSK3 beta phosphorylation. Curr Biol 11: 44–49.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M Bienz for valuable comments on this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T Akiyama.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akiyama, T., Kawasaki, Y. Wnt signalling and the actin cytoskeleton. Oncogene 25, 7538–7544 (2006). https://doi.org/10.1038/sj.onc.1210063

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210063

Keywords

This article is cited by

Search

Quick links