Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Insulin-like growth factor-binding protein-3 inhibition of prostate cancer growth involves suppression of angiogenesis

Abstract

Insulin-like growth factor-binding protein-3 (IGFBP-3) is a multifunctional protein that induces apoptosis utilizing both insulin-like growth factor receptor (IGF)-dependent and -independent mechanisms. We investigated the effects of IGFBP-3 on tumor growth and angiogenesis utilizing a human CaP xenograft model in severe-combined immunodeficiency mice. A 16-day course of IGFBP-3 injections reduced tumor size and increased apoptosis and also led to a reduction in the number of vessels stained with CD31. In vitro, IGFBP-3 inhibited both vascular endothelial growth factor- and IGF-stimulated human umbilical vein endothelial cells vascular network formation in a matrigel assay. This action is primarily IGF independent as shown by studies utilizing the non-IGFBP-binding IGF-1 analog Long-R3. Additionally, we used a fibroblast growth factor-enriched matrigel-plug assay and chick allantoic membrane assays to show that IGFBP-3 has potent antiangiogenic actions in vivo. Finally, overexpression of IGFBP-3 or the non-IGF-binding GGG-IGFBP-3 mutant in Zebrafish embryos confirmed that both IGFBP-3 and the non-IGF-binding mutant inhibited vessel formation in vivo, indicating that the antiangiogenic effect of IGFBP-3 is an IGF-independent phenomenon. Together, these studies provide the first evidence that IGFBP-3 has direct, IGF-independent inhibitory effects on angiogenesis providing an additional mechanism by which it exerts its tumor suppressive effects and further supporting its development for clinical use in the therapy of patients with prostate cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Acker T, Plate KH . (2003). Role of hypoxia in tumor angiogenesis – molecular and cellular angiogenic crosstalk. Cell Tissue Res 314: 145–155.

    Article  CAS  Google Scholar 

  • Arakawa A, Soh S, Chakraborty S, Scardino PT, Wheeler TM . (1997). Prognostic significance of angiogenesis in clinically localized prostate cancer (staining for factor VIII-related antigen and CD34 antigen). Prostate Cancer Prostatic Dis 1: 32–38.

    Article  CAS  Google Scholar 

  • Bagheri-Yarmand R, Kourbali Y, Rath AM, Vassy R, Martin A, Jozefonvicz J et al. (1999). Carboxymethyl benzylamide dextran blocks angiogenesis of MDA-MB435 breast carcinoma xenografted in fat pad and its lung metastases in nude mice. Cancer Res 59: 507–510.

    CAS  PubMed  Google Scholar 

  • Bettencourt MC, Bauer JJ, Sesterhenn IA, Connelly RR, Moul JW . (1998). CD34 immunohistochemical assessment of angiogenesis as a prognostic marker for prostate cancer recurrence after radical prostatectomy. J Urol 160: 459–465.

    Article  CAS  Google Scholar 

  • Bono AV, Celato N, Cova V, Salvadore M, Chinetti S, Novario R . (2002). Microvessel density in prostate carcinoma. Prostate Cancer Prostatic Dis 5: 123–127.

    Article  CAS  Google Scholar 

  • Booth BA, Boes M, Dake BL, Linhardt RJ, Caldwell EE, Weiler JM et al. (1996). Structure–function relationships in the heparin-binding C-terminal region of insulin-like growth factor binding protein-3. Growth Regul 6: 206–213.

    CAS  PubMed  Google Scholar 

  • Brown AT, Braden TD . (2001). Expression of insulin-like growth factor binding protein (IGFBP-3), and the effects of IGFBP-2 and -3 in the bovine corpus luteum. Domest Anim Endocrinol 20: 203–216.

    Article  CAS  Google Scholar 

  • Buckway CK, Wilson EM, Ahlsen M, Bang P, Oh Y, Rosenfeld RG . (2001). Mutation of three critical amino acids of the N-terminal domain of IGF- binding protein-3 essential for high affinity IGF binding. J Clin Endocrinol Metab 86: 4943–4950.

    Article  CAS  Google Scholar 

  • Cao Y, Linden P, Farnebo J, Cao R, Eriksson A, Kumar V et al. (1998). Vascular endothelial growth factor C induces angiogenesis in vivo. Proc Natl Acad Sci USA 95: 14389–14394.

    Article  CAS  Google Scholar 

  • Chan JM, Stampfer MJ, Giovannucci E, Gann PH, Ma J, Wilkinson P et al. (1998). Plasma insulin-like growth factor-I and prostate cancer risk: a prospective study. Science 279: 563–566.

    Article  CAS  Google Scholar 

  • Chan SS, Twigg SM, Firth SM, Baxter RC . (2005). Insulin-like growth factor binding protein-3 leads to insulin resistance in adipocytes. J Clin Endocrinol Metab 90: 6588–6595.

    Article  CAS  Google Scholar 

  • Cross LM, Cook MA, Lin S, Chen JN, Rubinstein AL . (2003). Rapid analysis of angiogenesis drugs in a live fluorescent zebrafish assay. Arterioscler Thromb Vasc Biol 23: 911–912.

    Article  CAS  Google Scholar 

  • Dahlfors G, Arnqvist HJ . (2000). Vascular endothelial growth factor and transforming growth factor-beta1 regulate the expression of insulin-like growth factor-binding protein-3, -4, and -5 in large vessel endothelial cells. Endocrinology 141: 2062–2067.

    Article  CAS  Google Scholar 

  • Delafontaine P, Ku L, Anwar A, Hayzer DJ . (1996). Insulin-like growth factor 1 binding protein 3 synthesis by aortic endothelial cells is a function of cell density. Biochem Biophys Res Commun 222: 478–482.

    Article  CAS  Google Scholar 

  • Diaz-Gonzalez JA, Russell J, Rouzaut A, Gil-Bazo I, Montuenga L . (2005). Targeting hypoxia and angiogenesis through HIF-1alpha inhibition. Cancer Biol Ther 4: 1055–1062.

    Article  CAS  Google Scholar 

  • Eivers E, McCarthy K, Glynn C, Nolan CM, Byrnes L . (2004). Insulin-like growth factor (IGF) signalling is required for early dorso-anterior development of the zebrafish embryo. Int J Dev Biol 48: 1131–1140.

    Article  CAS  Google Scholar 

  • Erickson GF, Nakatani A, Ling N, Shimasaki S . (1993). Insulin-like growth factor binding protein-3 gene expression is restricted to involuting corpora lutea in rat ovaries. Endocrinology 133: 1147–1157.

    Article  CAS  Google Scholar 

  • Erondu NE, Dake BL, Moser DR, Lin M, Boes M, Bar RS . (1996). Regulation of endothelial IGFBP-3 synthesis and secretion by IGF-I and TGF-beta. Growth Regul 6: 1–9.

    CAS  PubMed  Google Scholar 

  • Ferrara N . (2001). Role of vascular endothelial growth factor in regulation of physiological angiogenesis. Am J Physiol Cell Physiol 280: C1358–C1366.

    Article  CAS  Google Scholar 

  • Firth SM, Baxter RC . (2002). Cellular actions of the insulin-like growth factor binding proteins. Endocr Rev 23: 824–854.

    Article  CAS  Google Scholar 

  • Folkman J . (1971). Tumor angiogenesis: therapeutic implications. N Engl J Med 285: 1182–1186.

    Article  CAS  Google Scholar 

  • Folkman J . (2004). Endogenous angiogenesis inhibitors. Apmis 112: 496–507.

    Article  CAS  Google Scholar 

  • Franklin SF, Ferry RJ, Cohen P . (2003). Rapid insulin-like growth factor (IGF)-independent effects of IGF binding protein-3 on endothelial cell survival. J Clin Endocrinol Metab 88: 900–907.

    Article  CAS  Google Scholar 

  • Fraser HM, Lunn SF, Kim H, Duncan WC, Rodger FE, Illingworth PJ et al. (2000). Changes in insulin-like growth factor-binding protein-3 messenger ribonucleic acid in endothelial cells of the human corpus luteum: a possible role in luteal development and rescue. J Clin Endocrinol Metab 85: 1672–1677.

    Article  CAS  Google Scholar 

  • Fraser HM, Lunn SF, Kim H, Erickson GF . (1998). Insulin-like growth factor binding protein-3 mRNA expression in endothelial cells of the primate corpus luteum. Hum Reprod 13: 2180–2185.

    Article  CAS  Google Scholar 

  • Grimberg A, Coleman CM, Burns TF, Himelstein BP, Koch CJ, Cohen P et al. (2005). p53-Dependent and p53-independent induction of insulin-like growth factor binding protein-3 by deoxyribonucleic acid damage and hypoxia. J Clin Endocrinol Metab 90: 3568–3574.

    Article  CAS  Google Scholar 

  • Hanahan D, Folkman J . (1996). Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86: 353–364.

    Article  CAS  Google Scholar 

  • Huang SS, Ling TY, Tseng WF, Huang YH, Tang FM, Leal SM et al. (2003). Cellular growth inhibition by IGFBP-3 and TGF-beta1 requires LRP-1. FASEB J 17: 2068–2081.

    Article  CAS  Google Scholar 

  • Ikonen M, Liu B, Hashimoto Y, Ma L, Lee K-W, Niikura T et al. (2003). Interaction between the Alzheimer's survival peptide humanin and insulin-like growth factor-binding protein 3 regulates cell survival and apoptosis. Proc Natl Acad Sci USA 100: 13042–13047.

    Article  CAS  Google Scholar 

  • Iwatsuki K, Tanaka K, Kaneko T, Kazama R, Okamoto S, Nakayama Y et al. (2005). Runx1 promotes angiogenesis by downregulation of insulin-like growth factor-binding protein-3. Oncogene 24: 1129–1137.

    Article  CAS  Google Scholar 

  • Jackson MW, Bentel JM, Tilley WD . (1997). Vascular endothelial growth factor (VEGF) expression in prostate cancer and benign prostatic hyperplasia. J Urol 157: 2323–2328.

    Article  CAS  Google Scholar 

  • Jain RK . (2005). Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307: 58–62.

    Article  CAS  Google Scholar 

  • Jones HE, Gee JM, Taylor KM, Barrow D, Williams HD, Rubini M et al. (2005). Development of strategies for the use of anti-growth factor treatments. Endocr Relat Cancer 12 (Suppl 1): S173–S182.

    Article  CAS  Google Scholar 

  • Klauber N, Parangi S, Flynn E, Hamel E, D'Amato RJ . (1997). Inhibition of angiogenesis and breast cancer in mice by the microtubule inhibitors 2-methoxyestradiol and taxol. Cancer Res 57: 81–86.

    CAS  PubMed  Google Scholar 

  • Koong AC, Denko NC, Hudson KM, Schindler C, Swiersz L, Koch C et al. (2000). Candidate genes for the hypoxic tumor phenotype. Cancer Res 60: 883–887.

    CAS  PubMed  Google Scholar 

  • Lee HY, Chun KH, Liu B, Wiehle SA, Cristiano RJ, Hong WK et al. (2002). Insulin-like growth factor binding protein-3 inhibits the growth of non-small cell lung cancer. Cancer Res 62: 3530–3537.

    CAS  Google Scholar 

  • Lee KW, Ma L, Yan X, Liu B, Zhang XK, Cohen P . (2005). Rapid apoptosis induction by IGFBP-3 involves an insulin-like growth factor-independent nucleomitochondrial translocation of RXRalpha/Nur77. J Biol Chem 280: 16942–16948.

    Article  CAS  Google Scholar 

  • Lee WH, Wang GM, Yang XL, Seaman LB, Vannucci SI . (1999). Perinatal hypoxia-ischemia decreased neuronal but increased cerebral vascular endothelial IGFBP3 expression. Endocrine 11: 181–188.

    Article  CAS  Google Scholar 

  • Liu B, Lee HY, Weinzimer SA, Powell DR, Clifford JL, Kurie JM et al. (2000). Direct functional interactions between insulin-like growth factor-binding protein-3 and retinoid X receptor-alpha regulate transcriptional signaling and apoptosis. J Biol Chem 275: 33607–33613.

    Article  CAS  Google Scholar 

  • Liu B, Lee KW, Li H, Ma L, Lin GL, Chandraratna RA et al. (2005). Combination therapy of insulin-like growth factor binding protein-3 and retinoid X receptor ligands synergize on prostate cancer cell apoptosis in vitro and in vivo. Clin Cancer Res 11: 4851–4856.

    Article  CAS  Google Scholar 

  • Odenthal J, Haffter P, Vogelsang E, Brand M, van Eeden FJ, Furutani-Seiki M et al. (1996). Mutations affecting the formation of the notochord in the zebrafish, Danio rerio. Development 123: 103–115.

    CAS  PubMed  Google Scholar 

  • Oh SH, Kim WY, Kim JH, Younes MN, El-Naggar AK, Myers JN et al. (2006). Identification of insulin-like growth factor binding protein-3 as a farnesyl transferase inhibitor SCH66336-induced negative regulator of angiogenesis in head and neck squamous cell carcinoma. Clin Cancer Res 12: 653–661.

    Article  CAS  Google Scholar 

  • Olney RC, Wilson DM, Mohtai M, Fielder PJ, Smith RL . (1995). Interleukin-1 and tumor necrosis factor-alpha increase insulin-like growth factor-binding protein-3 (IGFBP-3) production and IGFBP-3 protease activity in human articular chondrocytes. J Endocrinol 146: 279–286.

    Article  CAS  Google Scholar 

  • Pratt SE, Pollak MN . (1994). Insulin-like growth factor binding protein 3 (IGF-BP3) inhibits estrogen-stimulated breast cancer cell proliferation. Biochem Biophys Res Commun 198: 292–297.

    Article  CAS  Google Scholar 

  • Schmid MC, Bisoffi M, Wetterwald A, Gautschi E, Thalmann GN, Mitola S et al. (2003). Insulin-like growth factor binding protein-3 is overexpressed in endothelial cells of mouse breast tumor vessels. Int J Cancer 103: 577–586.

    Article  CAS  Google Scholar 

  • Singh RP, Sharma G, Dhanalakshmi S, Agarwal C, Agarwal R . (2003). Suppression of advanced human prostate tumor growth in athymic mice by silibinin feeding is associated with reduced cell proliferation, increased apoptosis, and inhibition of angiogenesis. Cancer Epidemiol Biomarkers Prev 12: 933–939.

    CAS  PubMed  Google Scholar 

  • Singh RP, Sharma G, Mallikarjuna GU, Dhanalakshmi S, Agarwal C, Agarwal R . (2004a). In vivo suppression of hormone-refractory prostate cancer growth by inositol hexaphosphate: induction of insulin-like growth factor binding protein-3 and inhibition of vascular endothelial growth factor. Clin Cancer Res 10: 244–250.

    Article  CAS  Google Scholar 

  • Singh RP, Tyagi AK, Dhanalakshmi S, Agarwal R, Agarwal C . (2004b). Grape seed extract inhibits advanced human prostate tumor growth and angiogenesis and upregulates insulin-like growth factor binding protein-3. Int J Cancer 108: 733–740.

    Article  CAS  Google Scholar 

  • Tucci M, Nygard K, Tanswell BV, Farber HW, Hill DJ, Han VK . (1998). Modulation of insulin-like growth factor (IGF) and IGF binding protein biosynthesis by hypoxia in cultured vascular endothelial cells. J Endocrinol 157: 13–24.

    Article  CAS  Google Scholar 

  • Valentinis B, Bhala A, DeAngelis T, Baserga R, Cohen P . (1995). The human insulin-like growth factor (IGF) binding protein-3 inhibits the growth of fibroblasts with a targeted disruption of the IGF-I receptor gene. Mol Endocrinol 9: 361–367.

    CAS  PubMed  Google Scholar 

  • van Moorselaar RJ, Voest EE . (2002). Angiogenesis in prostate cancer: its role in disease progression and possible therapeutic approaches. Mol Cell Endocrinol 197: 239–250.

    Article  CAS  Google Scholar 

  • Voskuil DW, Vrieling A, van't Veer LJ, Kampman E, Rookus MA . (2005). The insulin-like growth factor system in cancer prevention: potential of dietary intervention strategies. Cancer Epidemiol Biomarkers Prev 14: 195–203.

    PubMed  Google Scholar 

  • Weidner N, Carroll PR, Flax J, Blumenfeld W, Folkman J . (1993). Tumor angiogenesis correlates with metastasis in invasive prostate carcinoma. Am J Pathol 143: 401–409.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zadeh SM, Binoux M . (1997). The 16-kDa proteolytic fragment of insulin-like growth factor (IGF) binding protein-3 inhibits the mitogenic action of fibroblast growth factor on mouse fibroblasts with a targeted disruption of the type 1 IGF receptor gene. Endocrinology 138: 3069–3072.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by a Prostate Cancer Foundation award and National Institutes of Health Grants RO1AG20954, P50CA92131 and RO1CA100938 (to PC), grants from the Stein-Oppenheimer Foundation, the Lawson Wilkins Pediatric Endocrinology Society, the UCLA Prostate Cancer SPORE and National Institutes of Health Grant 2K12HD34610 (to K-WL); and a National Institutes of Health Grant R01DK054508 (to SL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P Cohen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, B., Lee, KW., Anzo, M. et al. Insulin-like growth factor-binding protein-3 inhibition of prostate cancer growth involves suppression of angiogenesis. Oncogene 26, 1811–1819 (2007). https://doi.org/10.1038/sj.onc.1209977

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1209977

Keywords

This article is cited by

Search

Quick links