Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Basement membrane component laminin-5 is a target of the tumor suppressor Smad4

Abstract

The tumor suppressor Smad4 is involved in carcinogenesis mainly of the pancreas and colon. Functional inactivation of Smad4 is a genetically late event that occurs upon transition from premalignant stages to invasive and metastatic growth. Smad4 encodes an intracellular messenger common to all signalling cascades induced by members of the transforming growth factor-β (TGF-β) superfamily of cytokines. Despite extensive knowledge about the mechanisms of TGF-β/Smad signal transduction, little is known about Smad4 targets involved in the transition to malignancy. The hallmark of invasive growth is a breakdown of the basement membrane (BM), a specialized sheet of extracellular matrix produced through cooperation of epithelial and stromal cells. Laminin-5, a heterotrimeric epithelial-derived BM component, is commonly lost in carcinomas but not in premalignant tumors. Herein, we report that in human colon and pancreatic tumor cells, Smad4 functions as a positive transcriptional regulator of all three genes encoding laminin-5. Coordinate re-expression of the three laminin-5 chains induced by reconstitution of Smad4 leads to secretion and deposition of the heterotrimeric molecule in BM-like structures. These data define the expression control of an essential BM component as a novel function for the tumor suppressor Smad4.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Aberdam D, Virolle T, Simon-Assmann P . (2000). Transcriptional regulation of laminin gene expression. Microsc Res Technol 51: 228–237.

    Article  CAS  Google Scholar 

  • Bouziges F, Simo P, Simon-Assmann P, Haffen K, Kedinger M . (1991). Altered deposition of basement-membrane molecules in co-cultures of colonic cancer cells and fibroblasts. Int J Cancer 48: 101–108.

    Article  CAS  Google Scholar 

  • Brabletz T, Hlubek F, Spaderna S, Schmalhofer O, Hiendlmeyer E, Jung A et al. (2005). Invasion and metastasis in colorectal cancer: epithelial–mesenchymal transition, mesenchymal–epithelial transition, stem cells and beta-catenin. Cells Tissues Organs 179: 56–65.

    Article  CAS  Google Scholar 

  • Frank SR, Schroeder M, Fernandez P, Taubert S, Amati B . (2001). Binding of c-Myc to chromatin mediates mitogen-induced acetylation of histone H4 and gene activation. Genes Dev 15: 2069–2082.

    Article  CAS  Google Scholar 

  • Giannelli G, Antonaci S . (2000). Biological and clinical relevance of Laminin-5 in cancer. Clin Exp Metast 18: 439–443.

    Article  CAS  Google Scholar 

  • Givant-Horwitz V, Davidson B, Reich R . (2005). Laminin-induced signaling in tumor cells. Cancer Lett 223: 1–10.

    Article  CAS  Google Scholar 

  • Hanahan D, Weinberg RA . (2000). The hallmarks of cancer. Cell 100: 57–70.

    Article  CAS  Google Scholar 

  • Hlubek F, Jung A, Kotzor N, Kirchner T, Brabletz T . (2001). Expression of the invasion factor laminin gamma2 in colorectal carcinomas is regulated by beta-catenin. Cancer Res 61: 8089–8093.

    CAS  PubMed  Google Scholar 

  • Imamura T, Kanai F, Kawakami T, Amarsanaa J, Ijichi H, Hoshida Y et al. (2004). Proteomic analysis of the TGF-beta signaling pathway in pancreatic carcinoma cells using stable RNA interference to silence Smad4 expression. Biochem Biophys Res Commun 318: 289–296.

    Article  CAS  Google Scholar 

  • Jazag A, Ijichi H, Kanai F, Imamura T, Guleng B, Ohta M et al. (2005). Smad4 silencing in pancreatic cancer cell lines using stable RNA interference and gene expression profiles induced by transforming growth factor-beta. Oncogene 24: 662–671.

    Article  CAS  Google Scholar 

  • Jonson T, Heidenblad M, Hakansson P, Gorunova L, Johansson B, Fioretos T et al. (2003). Pancreatic carcinoma cell lines with SMAD4 inactivation show distinct expression responses to TGFB1. Genes Chromosomes Cancer 36: 340–352.

    Article  CAS  Google Scholar 

  • Katayama M, Sekiguchi K . (2004). Laminin-5 in epithelial tumour invasion. J Mol Histol 35: 277–286.

    Article  CAS  Google Scholar 

  • Korang K, Christiano AM, Uitto J, Mauviel A . (1995). Differential cytokine modulation of the genes LAMA3, LAMB3, and LAMC2, encoding the constitutive polypeptides, alpha 3, beta 3, and gamma 2, of human laminin 5 in epidermal keratinocytes. FEBS Lett 368: 556–558.

    Article  CAS  Google Scholar 

  • Liotta LA, Kohn EC . (2001). The microenvironment of the tumour–host interface. Nature 411: 375–379.

    Article  CAS  Google Scholar 

  • Lohi J . (2001). Laminin-5 in the progression of carcinomas. Int J Cancer 94: 763–767.

    Article  CAS  Google Scholar 

  • Lu W, Miyazaki K, Mizushima H, Nemoto N . (2001). Immunohistochemical distribution of laminin-5 gamma2 chain and its developmental change in human embryonic and foetal tissues. Histochem J 33: 629–637.

    Article  CAS  Google Scholar 

  • Luettges J, Galehdari H, Bröcker V, Schwarte-Waldhoff I, Henne-Bruns D, Klöppel G et al. (2001). Allelic loss is often the first hit in the biallelic inactivation of the p53 and DPC4 genes during pancreatic carcinogenesis. Am J Pathol 158: 1677–1683.

    Article  Google Scholar 

  • Lukashev ME, Werb Z . (1998). ECM signalling: orchestrating cell behaviour and misbehaviour. Trends Cell Biol 8: 437–441.

    Article  CAS  Google Scholar 

  • Maitra A, Molberg K, Albores-Saavedra J, Lindberg G . (2000). Loss of dpc4 expression in colonic adenocarcinomas correlates with the presence of metastatic disease. Am J Pathol 157: 1105–1111.

    Article  CAS  Google Scholar 

  • Miyaki M, Iijima T, Konishi M, Sakai K, Ishii A, Yasuno M et al. (1999). Higher frequency of Smad4 gene mutation in human colorectal cancer with distant metastasis. Oncogene 18: 3098–3103.

    Article  CAS  Google Scholar 

  • Mizushima H, Koshikawa N, Moriyama K, Takamura H, Nagashima Y, Hirahara F et al. (1998). Wide distribution of laminin-5 gamma 2 chain in basement membranes of various human tissues. Horm Res 50 (Suppl 2): 7–14.

    CAS  PubMed  Google Scholar 

  • Muller N, Reinacher-Schick A, Baldus S, van Hengel J, Berx G, Baar A et al. (2002). Smad4 induces the tumor suppressor E-cadherin and P-cadherin in colon carcinoma cells. Oncogene 21: 6049–6058.

    Article  Google Scholar 

  • Olsen J, Kirkeby LT, Brorsson MM, Dabelsteen S, Troelsen JT, Bordoy R et al. (2003). Converging signals synergistically activate the LAMC2 promoter and lead to accumulation of the laminin gamma 2 chain in human colon carcinoma cells. Biochem J 371: 211–221.

    Article  CAS  Google Scholar 

  • Patarroyo M, Tryggvason K, Virtanen I . (2002). Laminin isoforms in tumor invasion, angiogenesis and metastasis. Semin Cancer Biol 12: 197–207.

    Article  CAS  Google Scholar 

  • Pyke C, Romer J, Kallunki P, Lund LR, Ralfkiaer E, Dano K et al. (1994). The gamma 2 chain of kalinin/laminin 5 is preferentially expressed in invading malignant cells in human cancers. Am J Pathol 145: 782–791.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pyke C, Salo S, Ralfkiaer E, Romer J, Dano K, Tryggvason K . (1995). Laminin-5 is a marker of invading cancer cells in some human carcinomas and is coexpressed with the receptor for urokinase plasminogen activator in budding cancer cells in colon adenocarcinomas. Cancer Res 55: 4132–4139.

    CAS  PubMed  Google Scholar 

  • Richter M, Jurek D, Wrba F, Kaserer K, Wurzer G, Karner-Hanusch J et al. (2002). Cells obtained from colorectal microadenomas mirror early premalignant growth patterns in vitro. Eur J Cancer 38: 1937–1945.

    Article  CAS  Google Scholar 

  • Schwarte-Waldhoff I, Klein S, Blass-Kampmann S, Hintelmann A, Eilert C, Dreschers S et al. (1999). DPC4/SMAD4 mediated tumor suppression of colon carcinoma cells is associated with reduced urokinase expression. Oncogene 18: 3152–3158.

    Article  CAS  Google Scholar 

  • Schwarte-Waldhoff I, Volpert O, Bouck N, Sipos B, Hahn S, Klein-Scory S et al. (2000). Smad4/DPC4-mediated tumor suppression through suppression of angiogenesis. Proc Natl Acad Sci USA 97: 9624–9629.

    Article  CAS  Google Scholar 

  • Simon-Assmann P, Lefebvre O, Bellissent-Waydelich A, Olsen J, Orian-Rousseau V, De Arcangelis A . (1998). The laminins: role in intestinal morphogenesis and differentiation. Ann NY Acad Sci 859: 46–64.

    Article  CAS  Google Scholar 

  • Sordat I, Bosman FT, Dorta G, Rousselle P, Aberdam D, Blum AL et al. (1998). Differential expression of laminin-5 subunits and integrin receptors in human colorectal neoplasia. J Pathol 185: 44–52.

    Article  CAS  Google Scholar 

  • Sordat I, Rousselle P, Chaubert P, Petermann O, Aberdam D, Bosman FT et al. (2000). Tumor cell budding and laminin-5 expression in colorectal carcinoma can be modulated by the tissue micro-environment. Int J Cancer 88: 708–717.

    Article  CAS  Google Scholar 

  • Takahashi H, Oda T, Hasebe T, Aoyagi Y, Kinoshita T, Konishi M et al. (2004). Biologically different subgroups of invasive ductal carcinoma of the pancreas: Dpc4 status according to the ratio of intraductal carcinoma components. Clin Cancer Res 10: 3772–3779.

    Article  CAS  Google Scholar 

  • Takahashi S, Hasebe T, Oda T, Sasaki S, Kinoshita T, Konishi M et al. (2002). Cytoplasmic expression of laminin gamma2 chain correlates with postoperative hepatic metastasis and poor prognosis in patients with pancreatic ductal adenocarcinoma. Cancer 94: 1894–1901.

    Article  Google Scholar 

  • Takaku K, Oshima M, Miyoshi H, Matsui M, Seldin MF, Taketo MM . (1998). Intestinal tumorigenesis in compound mutant mice of both Dpc4 (Smad4) and Apc genes. Cell 92: 645–656.

    Article  CAS  Google Scholar 

  • Teller IC, Beaulieu JF . (2001). Interactions between laminin and epithelial cells in intestinal health and disease. Expert Rev Mol Med 2001: 1–18.

    Google Scholar 

  • Thiery JP . (2002). Epithelial–mesenchymal transitions in tumour progression. Nat Rev Cancer 2: 442–454.

    Article  CAS  Google Scholar 

  • Volmer MW, Radacz Y, Hahn SA, Klein-Scory S, Stuhler K, Zapatka M et al. (2004). Tumor suppressor Smad4 mediates downregulation of the anti-adhesive invasion-promoting matricellular protein SPARC: landscaping activity of Smad4 as revealed by a ‘secretome’ analysis. Proteomics 4: 1324–1334.

    Article  CAS  Google Scholar 

  • Wayner EA, Gil SG, Murphy GF, Wilke MS, Carter WG . (1993). Epiligrin, a component of epithelial basement membranes, is an adhesive ligand for alpha 3 beta 1 positive T lymphocytes. J Cell Biol 121: 1141–1152.

    Article  CAS  Google Scholar 

  • Wilentz RE, Iacobuzio-Donahue CA, Argani P, McCarthy DM, Parsons JL, Yeo CJ et al. (2000). Loss of expression of Dpc4 in pancreatic intraepithelial neoplasia: evidence that DPC4 inactivation occurs late in neoplastic progression. Cancer Res 60: 2002–2006.

    CAS  PubMed  Google Scholar 

  • Yuen HW, Ziober AF, Gopal P, Nasrallah I, Falls EM, Meneguzzi G et al. (2005). Suppression of laminin-5 expression leads to increased motility, tumorigenicity, and invasion. Exp Cell Res 309: 198–210.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank H Kalthoff and H Ungefroren for providing recombinant retrovirus, B Marian for providing LT97 cells, F Kanai for providing the Smad4 knockdown vector pcPUR+U6-Smad4i, A Menssen and H Hermeking for introduction in the ChIP assay technology, S Hahn for sequencing and S Klein-Scory and K Schulmann for critically reading the manuscript. This work was supported by grants from the Deutsche Krebshilfe – Dr Mildred Scheel-Stiftung (10-1804-Schw I) and the Wilhelm Sander-Stiftung (99.101.1) to IS-W and WS, by the FoRUM program of the Ruhr-University of Bochum and by Inserm and a grant from the Canceropôle Grand Est to PSA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I Schwarte-Waldhoff.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zapatka, M., Zboralski, D., Radacz, Y. et al. Basement membrane component laminin-5 is a target of the tumor suppressor Smad4. Oncogene 26, 1417–1427 (2007). https://doi.org/10.1038/sj.onc.1209918

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1209918

Keywords

This article is cited by

Search

Quick links