Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

Disruption of the retinoblastoma pathway by small interfering RNA and ectopic expression of the catalytic subunit of telomerase lead to immortalization of human ovarian surface epithelial cells

A Correction to this article was published on 17 April 2020

Abstract

The risk of developing ovarian cancer is about 1% over a lifetime, but it is the most deadly gynecologic cancer, in part due to lack of diagnostic markers for early-stage disease and cell model system for studying early neoplastic changes. Most existing immortal human ovarian surface epithelial cells were achieved by using viral protein such as SV40 T/t antigen or E6/E7, which inactivate multiple cellular pathways. In the current study, we used a small interfering RNA (siRNA) against the retinoblastoma gene (pRb) and ectopic expression of human telomerase reverse transcriptase (hTERT) to immortalize the primary ovarian epithelial cell line OSE137 and two additional human ovarian surface epithelial cells. The immortalized OSE137 showed increased telomerase activity, lengthened telomeres, increased G2/M phase, altered cell-cycle regulatory proteins but nontumorigenic. As both Rb and hTERT pathways are commonly altered in human ovarian cancer and these genetic changes are faithfully modeled in these cells without using viral protein, these immortal cells represent an authentic in vitro model system with which to study the initiation and progression of human ovarian cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Abbreviations

hTERT:

human telomerase reverse transcriptase

pRb:

retinoblastoma protein

TRAP:

telomeric repeat amplification protocol

References

  • Aprelikova ON, Fang BS, Meissner EG, Cotter S, Campbell M, Kuthiala A et al. (1999). BRCA1-associated growth arrest is RB-dependent. Proc Natl Acad Sci USA 96: 11866–11871.

    Article  CAS  Google Scholar 

  • Baege AC, Berger A, Schlegel R, Veldman T . (2002). Cervical epithelial cells transduced with the papillomavirus E6/E7 oncogenes maintain stable levels of oncoprotein expression but exhibit progressive, major increases in hTERT gene expression and telomerase activity. Am J Pathol 160: 1251–1257.

    Article  CAS  Google Scholar 

  • Band V . (1998). The role of retinoblastoma and p53 tumor suppressor pathways in human mammary epithelial cell immortalization. Int J Oncol 12: 499–507.

    CAS  PubMed  Google Scholar 

  • Bantounas I, Phylactou LA, Uney JB . (2004). RNA interference and the use of small interfering RNA to study gene function in mammalian systems. J Mol Endocrinol 33: 545–557.

    Article  CAS  Google Scholar 

  • Bernues J, Beltran R, Azorin F . (1991). SV40 recombinants carrying a d(CT.GA)22 sequence show increased genomic instability. Gene 108: 269–274.

    Article  CAS  Google Scholar 

  • Chun YM, Moon SK, Lee HY, Webster P, Brackmann DE, Rhim JS et al. (2002). Immortalization of normal adult human middle ear epithelial cells using a retrovirus containing the E6/E7 genes of human papillomavirus type 16. Ann Otol Rhinol Laryngol 111: 507–517.

    Article  Google Scholar 

  • D'Andrilli G, Kumar C, Scambia G, Giordano A . (2004). Cell cycle genes in ovarian cancer: steps toward earlier diagnosis and novel therapies. Clin Cancer Res 10: 8132–8141.

    Article  CAS  Google Scholar 

  • Davies BR, Steele IA, Edmondson RJ, Zwolinski SA, Saretzki G, von Zglinicki T et al. (2003). Immortalisation of human ovarian surface epithelium with telomerase and temperature-sensitive SV40 large T antigen. Exp Cell Res 288: 390–402.

    Article  CAS  Google Scholar 

  • Duensing S, Munger K . (2002). Human papillomaviruses and centrosome duplication errors: modeling the origins of genomic instability. Oncogene 21: 6241–6248.

    Article  CAS  Google Scholar 

  • Ferrandina G, Stoler A, Fagotti A, Fanfani F, Sacco R, De Pasqua A et al. (2000). p21WAF1/CIP1 protein expression in primary ovarian cancer. Int J Oncol 17: 1231–1235.

    CAS  PubMed  Google Scholar 

  • Gao Q, Singh L, Kumar A, Srinivasan S, Wazer DE, Band V . (2001). Human papillomavirus type 16 E6-induced degradation of E6TP1 correlates with its ability to immortalize human mammary epithelial cells. J Virol 75: 4459–4466.

    Article  CAS  Google Scholar 

  • Hashiguchi Y, Tsuda H, Yamamoto K, Inoue T, Ishiko O, Ogita S . (2001). Combined analysis of p53 and RB pathways in epithelial ovarian cancer. Hum Pathol 32: 988–996.

    Article  CAS  Google Scholar 

  • Hayflick L . (1973). Subculturing human diploid fibroblast cultures. In: Kruse Jr PF, Patterson Jr MK (eds). Tissue Culture Methods and Applications. Academic Press: New York. pp 220–223.

    Chapter  Google Scholar 

  • Hu Y, Rosen DG, Zhou Y, Feng L, Yang G, Liu J et al. (2005). Mitochondrial manganese-superoxide dismutase expression in ovarian cancer: role in cell proliferation and response to oxidative stress. J Biol Chem 280: 39485–39492.

    Article  CAS  Google Scholar 

  • Iftner T, Elbel M, Schopp B, Hiller T, Loizou JI, Caldecott KW et al. (2002). Interference of papillomavirus E6 protein with single-strand break repair by interaction with XRCC1. EMBO J 21: 4741–4748.

    Article  CAS  Google Scholar 

  • Jarrard DF, Sarkar S, Shi Y, Yeager TR, Magrane G, Kinoshita H et al. (1999). p16/pRb pathway alterations are required for bypassing senescence in human prostate epithelial cells. Cancer Res 59: 2957–2964.

    CAS  PubMed  Google Scholar 

  • Kauff ND, Mitra N, Robson ME, Hurley KE, Chuai S, Goldfrank D et al. (2005). Risk of ovarian cancer in BRCA1 and BRCA2 mutation-negative hereditary breast cancer families. J Natl Cancer Inst 97: 1382–1384.

    Article  CAS  Google Scholar 

  • Kusakari T, Kariya M, Mandai M, Tsuruta Y, Hamid AA, Fukuhara K et al. (2003). C-erbB-2 or mutant Ha-ras induced malignant transformation of immortalized human ovarian surface epithelial cells in vitro. Br J Cancer 89: 2293–2298.

    Article  CAS  Google Scholar 

  • Kusume T, Tsuda H, Kawabata M, Inoue T, Umesaki N, Suzuki T et al. (1999). The p16-cyclin D1/CDK4-pRb pathway and clinical outcome in epithelial ovarian cancer. Clin Cancer Res 5: 4152–4157.

    CAS  PubMed  Google Scholar 

  • Lenferink AE, Simpson JF, Shawver LK, Coffey RJ, Forbes JT, Arteaga CL . (2000). Blockade of the epidermal growth factor receptor tyrosine kinase suppresses tumorigenesis in MMTV/Neu + MMTV/TGF-alpha bigenic mice. Proc Natl Acad Sci USA 97: 9609–9614.

    Article  CAS  Google Scholar 

  • Liu J, Fanning CV . (2001). Can renal oncocytomas be distinguished from renal cell carcinoma on fine-needle aspiration specimens? A study of conventional smears in conjunction with ancillary studies. Cancer 93: 390–397.

    Article  CAS  Google Scholar 

  • Liu J, Yang G, Thompson-Lanza JA, Glassman A, Hayes K, Patterson A et al. (2004). A genetically defined model for human ovarian cancer. Cancer Res 64: 1655–1663.

    Article  CAS  Google Scholar 

  • Lundberg AS, Randell SH, Stewart SA, Elenbaas B, Hartwell KA, Brooks MW et al. (2002). Immortalization and transformation of primary human airway epithelial cells by gene transfer. Oncogene 21: 4577–4586.

    Article  CAS  Google Scholar 

  • McDougall JK . (2001). Telomerase activity and cellular immortalization. Dev Biol (Basel) 106: 267–272 discussion 272–3, 317–29.

    CAS  Google Scholar 

  • Noble JR, Zhong ZH, Neumann AA, Melki JR, Clark SJ, Reddel RR . (2004). Alterations in the p16(INK4a) and p53 tumor suppressor genes of hTERT-immortalized human fibroblasts. Oncogene 23: 3116–3121.

    Article  CAS  Google Scholar 

  • Ouellette MM, McDaniel LD, Wright WE, Shay JW, Schultz RA . (2000). The establishment of telomerase-immortalized cell lines representing human chromosome instability syndromes. Hum Mol Genet 9: 403–411.

    Article  CAS  Google Scholar 

  • Ozols RF, Bookman MA, Connolly DC, Daly MB, Godwin AK, Schilder RJ et al. (2004). Focus on epithelial ovarian cancer. Cancer Cell 5: 19–24.

    Article  CAS  Google Scholar 

  • Plug-Demaggio AW, McDougall JK . (2002). The human papillomavirus type 16 E6 oncogene induces premature mitotic chromosome segregation. Oncogene 21: 7507–7513.

    Article  CAS  Google Scholar 

  • Prowse A, Frolov A, Godwin AK . (2003). The genetics of ovarian cancer. In: Ozols RF (ed). American Cancer Society Atlas of Clinical Oncology. B.C. Decker Inc: Hamilton, Ontario. pp 49–82.

    Google Scholar 

  • Rosen DG, Yang G, Cai KQ, Bast Jr RC, Gershenson DM, Silva EG et al. (2005). Subcellular localization of p27kip1 expression predicts poor prognosis in human ovarian cancer. Clin Cancer Res 11 (2 Part 1): 632–637.

    CAS  PubMed  Google Scholar 

  • Sage J, Mulligan GJ, Attardi LD, Miller A, Chen S, Williams B et al. (2000). Targeted disruption of the three Rb-related genes leads to loss of G(1) control and immortalization. Genes Dev 14: 3037–3050.

    Article  CAS  Google Scholar 

  • Sankaranarayanan R, Ferlay J . (2006). Worldwide burden of gynaecological cancer: the size of the problem. Best Pract Res Clin Obstet Gynaecol 20: 1–19.

    Article  Google Scholar 

  • Takebayashi T, Higashi H, Sudo H, Ozawa H, Suzuki E, Shirado O et al. (2003). NF-kappa B-dependent induction of cyclin D1 by retinoblastoma protein (pRB) family proteins and tumor-derived pRB mutants. J Biol Chem 278: 14897–14905.

    Article  CAS  Google Scholar 

  • Tammela J, Odunsi K . (2004). Gene expression and prognostic significance in ovarian cancer. Minerva Ginecol 56: 495–502.

    CAS  PubMed  Google Scholar 

  • Terasawa K, Sagae S, Takeda T, Ishioka S, Kobayashi K, Kudo R . (1999). Telomerase activity in malignant ovarian tumors with deregulation of cell cycle regulatory proteins. Cancer Lett 142: 207–217.

    Article  CAS  Google Scholar 

  • Vasey PA . (2003). Resistance to chemotherapy in advanced ovarian cancer: mechanisms and current strategies. Br J Cancer 89 (Suppl 3): S23–S28.

    Article  CAS  Google Scholar 

  • Xiang H, Wang J, Mao Y, Liu M, Reddy VN, Li DW . (2002). Human telomerase accelerates growth of lens epithelial cells through regulation of the genes mediating RB/E2F pathway. Oncogene 21: 3784–3791.

    Article  CAS  Google Scholar 

  • Yang G, Cai KQ, Thompson-Lanza JA, Bast Jr RC, Liu J . (2004). Inhibition of breast and ovarian tumor growth through multiple signaling pathways by using retrovirus-mediated small interfering RNA against Her-2/neu gene expression. J Biol Chem 279: 4339–4345.

    Article  CAS  Google Scholar 

  • Zou GM, Yoder MC . (2005). Application of RNA interference to study stem cell function: current status and future perspectives. Biol Cell 97: 211–219.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by a research scholar grant from the American Cancer Society (JL) and Cancer Center Core grant (CA016672) from the National Cancer Institute (MD Anderson Cancer Center). We thank Drs Sandy Chang and Asha Multani from the MD Anderson Molecular Cytogenetics Core Facility for karyotyping the immortalized cells.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, G., Rosen, D., Colacino, J. et al. Disruption of the retinoblastoma pathway by small interfering RNA and ectopic expression of the catalytic subunit of telomerase lead to immortalization of human ovarian surface epithelial cells. Oncogene 26, 1492–1498 (2007). https://doi.org/10.1038/sj.onc.1209905

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1209905

Keywords

This article is cited by

Search

Quick links