Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Recruitment of insulin receptor substrate-1 and activation of NF-κB essential for midkine growth signaling through anaplastic lymphoma kinase

Abstract

Anaplastic lymphoma kinase (ALK) is a transmembrane receptor tyrosine kinase in the insulin receptor superfamily. We recently demonstrated that the growth factors pleiotrophin (PTN) and midkine (MK) are ligands for ALK and that upon ALK activation, insulin receptor substrate-1 (IRS-1) and other substrates are phosphorylated. Here, the role of IRS-1 in ligand-mediated ALK signaling is investigated in interleukin-3 (IL-3)-dependent 32D murine myeloid cells. These cells do not express ALK and IRS family members, and do not respond to exogenously added PTN or MK. We show that expression of ALK plus IRS-1 renders these cells independent of IL-3 owing to the activation of ALK by endogenous MK. Mutational analysis reveals that this transformed phenotype of 32D cells requires kinase-active ALK as well as the interaction of ALK with IRS-1. Furthermore, 32D/IRS-1/ALK cells display an enhanced activation of mitogen-activated protein kinase and PI3-kinase pathways, and a selective transcriptional activation of nuclear factor (NF)-κB. Small interfering RNA-mediated knockdown of the endogenous MK or p65/NF-κB revealed that both these are rate limiting for the transformed phenotype induced by ALK plus IRS-1. We conclude that the recruitment of IRS-1 to activated ALK and the activation of NF-κB are essential for the autocrine growth and survival signaling of MK.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 3
Figure 2
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Bai RY, Dieter P, Peschel C, Morris SW, Duyster J . (1998). Nucleophosmin-anaplastic lymphoma kinase of large-cell anaplastic lymphoma is a constitutively active tyrosine kinase that utilizes phospholipase C-gamma to mediate its mitogenicity. Mol Cell Biol 18: 6951–6961.

    Article  CAS  Google Scholar 

  • Ballinger MD, Shyamala V, Forrest LD, Deuter-Reinhard M, Doyle LV, Wang JX et al (1999). Semirational design of a potent, artificial agonist of fibroblast growth factor receptors. Nat Biotechnol 17: 1199–1204.

    Article  CAS  Google Scholar 

  • Baserga R . (1999). The IGF-I receptor in cancer research. Exp Cell Res 253: 1–6.

    Article  CAS  Google Scholar 

  • Baserga R . (2000a). The contradictions of the insulin-like growth factor 1 receptor. Oncogene 19: 5574–5581.

    Article  CAS  Google Scholar 

  • Baserga R . (2000b). Insulin-like growth factor I receptor signalling in prostate cancer cells. Growth Horm IGF Res 10 (Suppl A): S43–S44.

    Article  Google Scholar 

  • Bowden ET, Stoica GE, Wellstein A . (2002). Anti-apoptotic signaling of pleiotrophin through its receptor, anaplastic lymphoma kinase. J Biol Chem 277: 35862–35868.

    Article  CAS  Google Scholar 

  • Burks DJ, White MF . (2001). IRS proteins and beta-cell function. Diabetes 50 (Suppl 1): S140–S145.

    Article  CAS  Google Scholar 

  • Chang Q, Li Y, White MF, Fletcher JA, Xiao S . (2002). Constitutive activation of insulin receptor substrate 1 is a frequent event in human tumors: therapeutic implications. Cancer Res 62: 6035–6038.

    CAS  PubMed  Google Scholar 

  • Colleoni GW, Bridge JA, Garicochea B, Liu J, Filippa DA, Ladanyi M . (2000). ATIC-ALK: a novel variant ALK gene fusion in anaplastic large cell lymphoma resulting from the recurrent cryptic chromosomal inversion, inv(2)(p23q35). Am J Pathol 156: 781–789.

    Article  CAS  Google Scholar 

  • Cristofanelli B, Valentinis B, Soddu S, Rizzo MG, Marchetti A, Bossi G et al (2000). Cooperative transformation of 32D cells by the combined expression of IRS-1 and V-Ha-Ras. Oncogene 19: 3245–3255.

    Article  CAS  Google Scholar 

  • Czubayko F, Schulte AM, Berchem GJ, Wellstein A . (1996). Melanoma angiogenesis and metastasis modulated by ribozyme targeting of the secreted growth factor pleiotrophin. Proc Natl Acad Sci USA 93: 14753–14758.

    Article  CAS  Google Scholar 

  • Delsol G, Lamant L, Mariame B, Pulford K, Dastugue N, Brousset P et al (1997). A new subtype of large B-cell lymphoma expressing the ALK kinase and lacking the 2; 5 translocation. Blood 89: 1483–1490.

    CAS  PubMed  Google Scholar 

  • Deng T, Karin M . (1994). c-Fos transcriptional activity stimulated by H-Ras-activated protein kinase distinct from JNK and ERK. Nature 371: 171–175.

    Article  CAS  Google Scholar 

  • Dirks WG, Fahnrich S, Lis Y, Becker E, MacLeod RA, Drexler HG . (2002). Expression and functional analysis of the anaplastic lymphoma kinase (ALK) gene in tumor cell lines. Int J Cancer 100: 49–56.

    Article  CAS  Google Scholar 

  • Englund C, Loren CE, Grabbe C, Varshney GK, Deleuil F, Hallberg B et al (2003). Jeb signals through the Alk receptor tyrosine kinase to drive visceral muscle fusion. Nature 425: 512–516.

    Article  CAS  Google Scholar 

  • Fang W, Hartmann N, Chow DT, Riegel AT, Wellstein A . (1992). Pleiotrophin stimulates fibroblasts and endothelial and epithelial cells and is expressed in human cancer. J Biol Chem 267: 25889–25897.

    CAS  PubMed  Google Scholar 

  • Feng SH, Tsai S, Rodriguez J, Lo SC . (1999). Mycoplasmal infections prevent apoptosis and induce malignant transformation of interleukin-3-dependent 32D hematopoietic cells. Mol Cell Biol 19: 7995–8002.

    Article  CAS  Google Scholar 

  • Freeman M . (2003). Developmental biology: partners united. Nature 425: 468–469.

    Article  CAS  Google Scholar 

  • Heidaran MA, Beeler JF, Yu JC, Ishibashi T, LaRochelle WJ, Pierce JH et al. (1993). Differences in substrate specificities of alpha and beta platelet-derived growth factor (PDGF) receptors. Correlation with their ability to mediate PDGF transforming functions. J Biol Chem 268: 9287–9295.

    CAS  PubMed  Google Scholar 

  • Hernandez L, Pinyol M, Hernandez S, Bea S, Pulford K, Rosenwald A et al (1999). TRK-fused gene (TFG) is a new partner of ALK in anaplastic large cell lymphoma producing two structurally different TFG-ALK translocations. Blood 94: 3265–3268.

    CAS  PubMed  Google Scholar 

  • Hill CS, Marais R, John S, Wynne J, Dalton S, Treisman R . (1993). Functional analysis of a growth factor-responsive transcription factor complex. Cell 73: 395–406.

    Article  CAS  Google Scholar 

  • Huang C, Ma WY, Dong Z . (1996). Requirement for phosphatidylinositol 3-kinase in epidermal growth factor-induced AP-1 transactivation and transformation in JB6 P+cells. Mol Cell Biol 16: 6427–6435.

    Article  CAS  Google Scholar 

  • Iwahara T, Fujimoto J, Wen D, Cupples R, Bucay N, Arakawa T et al (1997). Molecular characterization of ALK, a receptor tyrosine kinase expressed specifically in the nervous system. Oncogene 14: 439–449.

    Article  CAS  Google Scholar 

  • Karin M, Hunter T . (1995). Transcriptional control by protein phosphorylation: signal transmission from the cell surface to the nucleus. Curr Biol 5: 747–757.

    Article  CAS  Google Scholar 

  • Karin M, Lin A . (2002). NF-kappaB at the crossroads of life and death. Nat Immunol 3: 221–227.

    Article  CAS  Google Scholar 

  • Kuefer MU, Look AT, Pulford K, Behm FG, Pattengale PK, Mason DY et al (1997). Retrovirus-mediated gene transfer of NPM-ALK causes lymphoid malignancy in mice. Blood 90: 2901–2910.

    CAS  PubMed  Google Scholar 

  • Lamant L, Pulford K, Bischof D, Morris SW, Mason DY, Delsol G et al (2000). Expression of the ALK tyrosine kinase gene in neuroblastoma. Am J Pathol 156: 1711–1721.

    Article  CAS  Google Scholar 

  • Lawrence B, Perez-Atayde A, Hibbard MK, Rubin BP, Dal Cin P, Pinkus JL et al (2000). TPM3-ALK and TPM4-ALK oncogenes in inflammatory myofibroblastic tumors. Am J Pathol 157: 377–384.

    Article  CAS  Google Scholar 

  • Lee HH, Norris A, Weiss JB, Frasch M . (2003). Jelly belly protein activates the receptor tyrosine kinase Alk to specify visceral muscle pioneers. Nature 425: 507–512.

    Article  CAS  Google Scholar 

  • Li XQ, Hisaoka M, Shi DR, Zhu XZ, Hashimoto H . (2004). Expression of anaplastic lymphoma kinase in soft tissue tumors: an immunohistochemical and molecular study of 249 cases. Hum Pathol 35: 711–721.

    Article  CAS  Google Scholar 

  • Lu KV, Jong KA, Kim GY, Singh J, Dia EQ, Yoshimoto K et al (2005). Differential induction of glioblastoma migration and growth by two forms of pleiotrophin. J Biol Chem 280: 26953–26964.

    Article  CAS  Google Scholar 

  • Ma Z, Cools J, Marynen P, Cui X, Siebert R, Gesk S et al (2000). Inv(2)(p23q35) in anaplastic large-cell lymphoma induces constitutive anaplastic lymphoma kinase (ALK) tyrosine kinase activation by fusion to ATIC, an enzyme involved in purine nucleotide biosynthesis. Blood 95: 2144–2149.

    CAS  PubMed  Google Scholar 

  • Maheshwari G, Wiley HS, Lauffenburger DA . (2001). Autocrine epidermal growth factor signaling stimulates directionally persistent mammary epithelial cell migration. J Cell Biol 155: 1123–1128.

    Article  CAS  Google Scholar 

  • Marais R, Wynne J, Treisman R . (1993). The SRF accessory protein Elk-1 contains a growth factor-regulated transcriptional activation domain. Cell 73: 381–393.

    Article  CAS  Google Scholar 

  • Minden A, Lin A, McMahon M, Lange-Carter C, Derijard B, Davis RJ et al (1994). Differential activation of ERK and JNK mitogen-activated protein kinases by Raf-1 and MEKK. Science 266: 1719–1723.

    Article  CAS  Google Scholar 

  • Mirkin BL, Clark S, Zheng X, Chu F, White BD, Greene M et al (2005). Identification of midkine as a mediator for intercellular transfer of drug resistance. Oncogene 24: 4965–4974.

    Article  CAS  Google Scholar 

  • Morris SW, Kirstein MN, Valentine MB, Dittmer KG, Shapiro DN, Saltman DL et al (1994). Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin's lymphoma. Science 263: 1281–1284.

    Article  CAS  Google Scholar 

  • Morris SW, Naeve C, Mathew P, James PL, Kirstein MN, Cui X et al (1997). ALK, the chromosome 2 gene locus altered by the t(2;5) in non-Hodgkin's lymphoma, encodes a novel neural receptor tyrosine kinase that is highly related to leukocyte tyrosine kinase (LTK). Oncogene 14: 2175–2188.

    Article  CAS  Google Scholar 

  • Muramatsu T . (2002). Midkine and pleiotrophin: two related proteins involved in development, survival, inflammation and tumorigenesis. J Biochem (Tokyo) 132: 359–371.

    Article  CAS  Google Scholar 

  • Osajima-Hakomori Y, Miyake I, Ohira M, Nakagawara A, Nakagawa A, Sakai R . (2005). Biological role of anaplastic lymphoma kinase in neuroblastoma. Am J Pathol 167: 213–222.

    Article  CAS  Google Scholar 

  • Ozes ON, Mayo LD, Gustin JA, Pfeffer SR, Pfeffer LM, Donner DB . (1999). NF-kappaB activation by tumour necrosis factor requires the Akt serine-threonine kinase. Nature 401: 82–85.

    Article  CAS  Google Scholar 

  • Powers C, Aigner A, Stoica GE, McDonnell K, Wellstein A . (2002). Pleiotrophin signaling through anaplastic lymphoma kinase (ALK) is rate-limiting for glioblastoma growth. J Biol Chem 277: 14153–14158.

    Article  CAS  Google Scholar 

  • Price MA, Rogers AE, Treisman R . (1995). Comparative analysis of the ternary complex factors Elk-1, SAP-1a and SAP-2 (ERP/NET). EMBO J 14: 2589–2601.

    Article  CAS  Google Scholar 

  • Pulford K, Morris SW, Turturro F . (2004). Anaplastic lymphoma kinase proteins in growth control and cancer. J Cell Physiol 199: 330–358.

    Article  CAS  Google Scholar 

  • Reuther JY, Reuther GW, Cortez D, Pendergast AM, Baldwin Jr AS . (1998). A requirement for NF-kappaB activation in Bcr-Abl-mediated transformation. Genes Dev 12: 968–981.

    Article  CAS  Google Scholar 

  • Richmond A . (2002). Nf-kappa B, chemokine gene transcription and tumour growth. Nat Rev Immunol 2: 664–674.

    Article  CAS  Google Scholar 

  • Romano MF, Lamberti A, Bisogni R, Garbi C, Pagnano AM, Auletta P et al (1999). Amifostine inhibits hematopoietic progenitor cell apoptosis by activating NF-kappaB/Rel transcription factors. Blood 94: 4060–4066.

    CAS  PubMed  Google Scholar 

  • Romashkova JA, Makarov SS . (1999). NF-kappaB is a target of AKT in anti-apoptotic PDGF signalling. Nature 401: 86–90.

    Article  CAS  Google Scholar 

  • Sachdev D, Yee D . (2001). The IGF system and breast cancer. Endocr Relat Cancer 8: 197–209.

    Article  CAS  Google Scholar 

  • Scharf JG, Braulke T . (2003). The role of the IGF axis in hepatocarcinogenesis. Horm Metab Res 35: 685–693.

    Article  CAS  Google Scholar 

  • Schulte AM, Lai S, Kurtz A, Czubayko F, Riegel AT, Wellstein A . (1996). Human trophoblast and choriocarcinoma expression of the growth factor pleiotrophin attributable to germ line insertion of an endogenous retrovirus. Proc Natl Acad Sci USA 93: 14759–14764.

    Article  CAS  Google Scholar 

  • Schulte AM, Wellstein A . (1997). Pleiotrophin and related molecules. In: Bicknell R, Lewis CM and Ferrara N (eds). Tumour Angiogenesis. Oxford University Press: Oxford, New York, Tokyo, pp 273–289.

    Google Scholar 

  • Singh AB, Harris RC . (2005). Autocrine, paracrine and juxtacrine signaling by EGFR ligands. Cell Signal 17: 1183–1193.

    Article  CAS  Google Scholar 

  • Stoica GE, Kuo A, Aigner A, Sunitha I, Souttou B, Malerczyk C et al (2001). Identification of anaplastic lymphoma kinase as a receptor for the growth factor pleiotrophin. J Biol Chem 276: 16772–16779.

    Article  CAS  Google Scholar 

  • Stoica GE, Kuo A, Powers C, Bowden ET, Sale EB, Riegel AT et al. (2002). Midkine binds to anaplastic lymphoma kinase (ALK) and acts as a growth factor for different cell types. J Biol Chem 277: 35990–35998.

    Article  CAS  Google Scholar 

  • Surmacz E . (2000). Function of the IGF-I receptor in breast cancer. J Mammary Gland Biol Neoplasia 5: 95–105.

    Article  CAS  Google Scholar 

  • Surmacz E, Bartucci M . (2004). Role of estrogen receptor alpha in modulating IGF-I receptor signaling and function in breast cancer. J Exp Clin Cancer Res 23: 385–394.

    CAS  PubMed  Google Scholar 

  • Touriol C, Greenland C, Lamant L, Pulford K, Bernard F, Rousset T et al. (2000). Further demonstration of the diversity of chromosomal changes involving 2p23 in ALK-positive lymphoma: 2 cases expressing ALK kinase fused to CLTCL (clathrin chain polypeptide-like). Blood 95: 3204–3207.

    CAS  PubMed  Google Scholar 

  • Trinei M, Lanfrancone L, Campo E, Pulford K, Mason DY, Pelicci PG et al (2000). A new variant anaplastic lymphoma kinase (ALK)-fusion protein (ATIC-ALK) in a case of ALK-positive anaplastic large cell lymphoma. Cancer Res 60: 793–798.

    CAS  PubMed  Google Scholar 

  • Ueno H, Sasaki K, Kozutsumi H, Miyagawa K, Mitani K, Yazaki Y et al (1996). Growth and survival signals transmitted via two distinct NPXY motifs within leukocyte tyrosine kinase, an insulin receptor-related tyrosine kinase. J Biol Chem 271: 27707–27714.

    Article  CAS  Google Scholar 

  • Valentinis B, Baserga R . (2001). IGF-I receptor signalling in transformation and differentiation. Mol Pathol 54: 133–137.

    Article  CAS  Google Scholar 

  • Valentinis B, Romano G, Peruzzi F, Morrione A, Prisco M, Soddu S et al (1999). Growth and differentiation signals by the insulin-like growth factor 1 receptor in hemopoietic cells are mediated through different pathways. J Biol Chem 274: 12423–12430.

    Article  CAS  Google Scholar 

  • Wang CY, Mayo MW, Baldwin Jr AS . (1996). TNF- and cancer therapy-induced apoptosis: potentiation by inhibition of NF-kappaB. Science 274: 784–787.

    Article  CAS  Google Scholar 

  • Wang LM, Myers Jr MG, Sun XJ, Aaronson SA, White M, Pierce JH . (1993). IRS-1: essential for insulin- and IL-4-stimulated mitogenesis in hematopoietic cells. Science 261: 1591–1594.

    Article  CAS  Google Scholar 

  • White MF . (1998). The IRS-signaling system: a network of docking proteins that mediate insulin and cytokine action. Recent Prog Horm Res 53: 119–138.

    CAS  PubMed  Google Scholar 

  • White MF . (2002). IRS proteins and the common path to diabetes. Am J Physiol Endocrinol Metab 283: E413–22.

    Article  CAS  Google Scholar 

  • Zamorano J, Mora AL, Boothby M, Keegan AD . (2001). NF-kappa B activation plays an important role in the IL-4-induced protection from apoptosis. Int Immunol 13: 1479–1487.

    Article  CAS  Google Scholar 

  • Zhang N, Deuel TF . (1999). Pleiotrophin and midkine, a family of mitogenic and angiogenic heparin-binding growth and differentiation factors. Curr Opin Hematol 6: 44–50.

    Article  CAS  Google Scholar 

  • Zhou BP, Hu MC, Miller SA, Yu Z, Xia W, Lin SY et al (2000). HER-2/neu blocks tumor necrosis factor-induced apoptosis via the Akt/NF-kappaB pathway. J Biol Chem 275: 8027–8031.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr L-M Wang (National Cancer Institute, Bethesda MD) for 32D and 32D/IRS-1 cell lines and Dr E Bowden (Georgetown University) for discussion and help with the experiments. This work is supported by grants from the National Cancer Institute, National Institutes of Health to AW CA101811 and by C06 RR14567 from the National Center for Research Resources, National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Wellstein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuo, A., Stoica, G., Riegel, A. et al. Recruitment of insulin receptor substrate-1 and activation of NF-κB essential for midkine growth signaling through anaplastic lymphoma kinase. Oncogene 26, 859–869 (2007). https://doi.org/10.1038/sj.onc.1209840

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1209840

Keywords

This article is cited by

Search

Quick links