Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Kit and PDGFR-α activities are necessary for Notch4/Int3-induced tumorigenesis

Abstract

Transgenic mice overexpressing Notch4 intracellular domain (Int3) under the control of the whey acidic protein (WAP) or mouse mammary tumor virus-long terminal repeat promoters, develop mammary tumors. Microarray analysis of these tumors revealed high levels of c-Kit expression. Gleevec is a tyrosine kinase inhibitor that targets c-Kit, platelet-derived growth factor receptors (PDGFRs) and c-Abl. This led us to speculate that tyrosine kinase receptor activity might be a driving force in the development of Int3 mammary tumors. WAP-Int3 tumor-bearing mice were treated with continuous release of Gleevec using subcutaneously implanted Alzet pumps. Phoshorylation of c-Kit, PDGFRs and c-Abl is inhibited in Int3 transgenic mammary tumors by Gleevec. Inhibition of these enzymes is associated with a decrease in cell proliferation and angiogenesis, and an induction of apoptosis. To examine the signaling mechanisms underlying Notch4/Int3 tumorigenesis, we employed small interfering RNA (siRNA) to knock down c-Kit, PDGFRs and c-Abl alone or in combination and observed the effects on soft agar growth of HC11 cells overexpressing Int3. Only siRNA constructs for c-Kit and/or PDGFR-α were able to inhibit HC11-Int3 colony formation in soft agar. Our data demonstrate an inhibitory effect of Gleevec on Int3-induced transformation of HC11 cells and mammary tumors and indicate an oncogenic role for c-Kit and PDGFR-α tyrosine kinases in the context of Int3 signaling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Allenspach EJ, Maillard I, Aster JC, Pear WS . (2002). Notch signaling in cancer. Cancer Biol Ther 1: 466–476.

    Article  Google Scholar 

  • Ball RK, Friis RR, Schoenenberger CA, Doppler W, Groner B . (1988). Prolactin regulation of beta-casein gene expression and of a cytosolic 120-kDa protein in a cloned mouse mammary epithelial cell line. EMBO J 7: 2089–2095.

    Article  CAS  Google Scholar 

  • Basciani S, Brama M, Mariani S, De Luca G, Arizzi M, Vesci L et al. (2005). Imatinib mesylate inhibits Leydig cell tumor growth: evidence for in vitro and in vivo activity. Cancer Res 65: 1897–1903.

    Article  CAS  Google Scholar 

  • Besmer P, Murphy JE, George PC, Qiu FH, Bergold PJ, Lederman L et al. (1986). A new acute transforming feline retrovirus and relationship of its oncogene v-kit with the protein kinase gene family. Nature 320: 415–421.

    Article  CAS  Google Scholar 

  • Betsholtz C . (2003). Biology of platelet-derived growth factors in development. Birth Defects Res C Embryo Today 69: 272–285.

    Article  CAS  Google Scholar 

  • Callahan R, Raafat A . (2001). Notch signaling in mammary gland tumorigenesis. J Mammary Gland Biol Neoplasia 6: 23–36.

    Article  CAS  Google Scholar 

  • Carvalho I, Milanezi F, Martins A, Reis RM, Schmitt F . (2005). Overexpression of platelet-derived growth factor receptor alpha in breast cancer is associated with tumour progression. Breast Cancer Res 7: R788–R795.

    Article  CAS  Google Scholar 

  • Chiaramonte R, Basile A, Tassi E, Calzavara E, Cecchinato V, Rossi V et al. (2005). A wide role for NOTCH1 signaling in acute leukemia. Cancer Lett 219: 113–120.

    Article  CAS  Google Scholar 

  • Cortes J, O'Brien S, Kantarjian H . (2004). Discontinuation of imatinib therapy after achieving a molecular response. Blood 104: 2204–2205.

    Article  CAS  Google Scholar 

  • Dang TP, Eichenberger S, Gonzalez A, Olson S, Carbone DP . (2003). Constitutive activation of Notch3 inhibits terminal epithelial differentiation in lungs of transgenic mice. Oncogene 22: 1988–1997.

    Article  CAS  Google Scholar 

  • Dang TP, Gazdar AF, Virmani AK, Sepetavec T, Hande KR, Minna JD et al. (2000). Chromosome 19 translocation, overexpression of Notch3, and human lung cancer. J Natl Cancer Inst 92: 1355–1357.

    Article  CAS  Google Scholar 

  • Das AV, James J, Zhao X, Rahnenfuhrer J, Ahmad I . (2004). Identification of c-Kit receptor as a regulator of adult neural stem cells in the mammalian eye: interactions with Notch signaling. Dev Biol 273: 87–105.

    Article  CAS  Google Scholar 

  • de Jong JS, van Diest PJ, van der Valk P, Baak JP . (1998). Expression of growth factors, growth inhibiting factors, and their receptors in invasive breast cancer. I: an inventory in search of autocrine and paracrine loops. J Pathol 184: 44–52.

    Article  CAS  Google Scholar 

  • Diallo R, Rody A, Jackisch C, Ting E, Schaefer KL, Kissler S et al. (2006). C-KIT expression in ductal carcinoma in situ of the breast: co-expression with HER-2/neu. Hum Pathol 37: 205–211.

    Article  CAS  Google Scholar 

  • Dievart A, Beaulieu N, Jolicoeur P . (1999). Involvement of Notch1 in the development of mouse mammary tumors. Oncogene 18: 5973–5981.

    Article  CAS  Google Scholar 

  • Dontu G, Jackson KW, McNicholas E, Kawamura MJ, Abdallah WM, Wicha MS . (2004). Role of Notch signaling in cell-fate determination of human mammary stem/progenitor cells. Breast Cancer Res 6: R605–R615.

    Article  CAS  Google Scholar 

  • Gallahan D, Callahan R . (1997). The mouse mammary tumor associated gene INT3 is a unique member of the NOTCH gene family (NOTCH4). Oncogene 14: 1883–1890.

    Article  CAS  Google Scholar 

  • Gallahan D, Jhappan C, Robinson G, Hennighausen L, Sharp R, Kordon E et al. (1996). Expression of a truncated Int3 gene in developing secretory mammary epithelium specifically retards lobular differentiation resulting in tumorigenesis. Cancer Res 56: 1775–1785.

    CAS  PubMed  Google Scholar 

  • Gallahan D, Kozak C, Callahan R . (1987). A new common integration region (int-3) for mouse mammary tumor virus on mouse chromosome 17. J Virol 61: 218–220.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ghatak S, Misra S, Toole BP . (2002). Hyaluronan oligosaccharides inhibit anchorage-independent growth of tumor cells by suppressing the phosphoinositide 3-kinase/Akt cell survival pathway. J Biol Chem 277: 38013–38020.

    Article  CAS  Google Scholar 

  • Heinrich MC, Corless CL, Duensing A, McGreevey L, Chen CJ, Joseph N et al. (2003). PDGFRA activating mutations in gastrointestinal stromal tumors. Science 299: 708–710.

    Article  CAS  Google Scholar 

  • Hwang RF, Yokoi K, Bucana CD, Tsan R, Killion JJ, Evans DB et al. (2003). Inhibition of platelet-derived growth factor receptor phosphorylation by STI571 (Gleevec) reduces growth and metastasis of human pancreatic carcinoma in an orthotopic nude mouse model. Clin Cancer Res 9: 6534–6544.

    CAS  PubMed  Google Scholar 

  • Imatani A, Callahan R . (2000). Identification of a novel NOTCH-4/INT-3 RNA species encoding an activated gene product in certain human tumor cell lines. Oncogene 19: 223–231.

    Article  CAS  Google Scholar 

  • Jeffries S, Capobianco AJ . (2000). Neoplastic transformation by Notch requires nuclear localization. Mol Cell Biol 20: 3928–3941.

    Article  CAS  Google Scholar 

  • Jhappan C, Gallahan D, Stahle C, Chu E, Smith GH, Merlino G et al. (1992). Expression of an activated Notch-related int-3 transgene interferes with cell differentiation and induces neoplastic transformation in mammary and salivary glands. Genes Dev 6: 345–355.

    Article  CAS  Google Scholar 

  • Kim MK, Higgins J, Cho EY, Ko YH, Oh YL . (2000). Expression of CD34, bcl-2, and kit in inflammatory fibroid polyps of the gastrointestinal tract. Appl Immunohistochem Mol Morphol 8: 147–153.

    CAS  Google Scholar 

  • Lasota J, Jasinski M, Sarlomo-Rikala M, Miettinen M . (1999). Mutations in exon 11 of c-Kit occur preferentially in malignant versus benign gastrointestinal stromal tumors and do not occur in leiomyomas or leiomyosarcomas. Am J Pathol 154: 53–60.

    Article  CAS  Google Scholar 

  • le Coutre P, Mologni L, Cleris L, Marchesi E, Buchdunger E, Giardini R et al. (1999). In vivo eradication of human BCR/ABL-positive leukemia cells with an ABL kinase inhibitor. J Natl Cancer Inst 91: 163–168.

    Article  CAS  Google Scholar 

  • Leveen P, Pekny M, Gebre-Medhin S, Swolin B, Larsson E, Betsholtz C . (1994). Mice deficient for PDGF B show renal, cardiovascular, and hematological abnormalities. Genes Dev 8: 1875–1887.

    Article  CAS  Google Scholar 

  • Marley SB, Gordon MY . (2005). Chronic myeloid leukaemia: stem cell derived but progenitor cell driven. Clin Sci (London) 109: 13–25.

    Article  CAS  Google Scholar 

  • Matsui J, Wakabayashi T, Asada M, Yoshimatsu K, Okada M . (2004). Stem cell factor/c-kit signaling promotes the survival, migration, and capillary tube formation of human umbilical vein endothelial cells. J Biol Chem 279: 18600–18607.

    Article  CAS  Google Scholar 

  • Noseda M, McLean G, Niessen K, Chang L, Pollet I, Montpetit R et al. (2004). Notch activation results in phenotypic and functional changes consistent with endothelial-to-mesenchymal transformation. Circ Res 94: 910–917.

    Article  CAS  Google Scholar 

  • Pear WS, Aster JC . (2004). T cell acute lymphoblastic leukemia/lymphoma: a human cancer commonly associated with aberrant NOTCH1 signaling. Curr Opin Hematol 11: 426–433.

    Article  CAS  Google Scholar 

  • Raafat A, Bargo S, Anver MR, Callahan R . (2004). Mammary development and tumorigenesis in mice expressing a truncated human Notch4/Int3 intracellular domain (h-Int3sh). Oncogene 23: 9401–9407.

    Article  CAS  Google Scholar 

  • Ramalho-Santos M, Yoon S, Matsuzaki Y, Mulligan RC, Melton DA . (2002). ‘Stemness’: transcriptional profiling of embryonic and adult stem cells. Science 298: 597–600.

    Article  CAS  Google Scholar 

  • Reedijk M, Odorcic S, Chang L, Zhang H, Miller N, McCready DR et al. (2005). High-level coexpression of JAG1 and NOTCH1 is observed in human breast cancer and is associated with poor overall survival. Cancer Res 65: 8530–8537.

    Article  CAS  Google Scholar 

  • Robbins J, Blondel BJ, Gallahan D, Callahan R . (1992). Mouse mammary tumor gene int-3: a member of the notch gene family transforms mammary epithelial cells. J Virol 66: 2594–2599.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smith GH, Gallahan D, Diella F, Jhappan C, Merlino G, Callahan R . (1995). Constitutive expression of a truncated INT3 gene in mouse mammary epithelium impairs differentiation and functional development. Cell Growth Differ 6: 563–577.

    CAS  PubMed  Google Scholar 

  • Soriano P . (1994). Abnormal kidney development and hematological disorders in PDGF beta-receptor mutant mice. Genes Dev 8: 1888–1896.

    Article  CAS  Google Scholar 

  • Taniguchi M, Nishida T, Hirota S, Isozaki K, Ito T, Nomura T et al. (1999). Effect of c-kit mutation on prognosis of gastrointestinal stromal tumors. Cancer Res 59: 4297–4300.

    CAS  Google Scholar 

  • Tsuda H, Morita D, Kimura M, Shinto E, Ohtsuka Y, Matsubara O et al. (2005a). Correlation of KIT and EGFR overexpression with invasive ductal breast carcinoma of the solid-tubular subtype, nuclear grade 3, and mesenchymal or myoepithelial differentiation. Cancer Sci 96: 48–53.

    Article  CAS  Google Scholar 

  • Tsuda H, Tani Y, Weisenberger J, Kitada S, Hasegawa T, Murata T et al. (2005b). Frequent KIT and epidermal growth factor receptor overexpressions in undifferentiated-type breast carcinomas with ‘stem-cell-like’ features. Cancer Sci 96: 333–339.

    Article  CAS  Google Scholar 

  • Uehara H, Kim SJ, Karashima T, Shepherd DL, Fan D, Tsan R et al. (2003). Effects of blocking platelet-derived growth factor-receptor signaling in a mouse model of experimental prostate cancer bone metastases. J Natl Cancer Inst 95: 458–470.

    Article  CAS  Google Scholar 

  • Ulivi P, Zoli W, Medri L, Amadori D, Saragoni L, Barbanti F et al. (2004). c-kit and SCF expression in normal and tumor breast tissue. Breast Cancer Res Treat 83: 33–42.

    Article  CAS  Google Scholar 

  • Wang D, Huang HJ, Kazlauskas A, Cavenee WK . (1999). Induction of vascular endothelial growth factor expression in endothelial cells by platelet-derived growth factor through the activation of phosphatidylinositol 3-kinase. Cancer Res 59: 1464–1472.

    CAS  PubMed  Google Scholar 

  • Weijzen S, Rizzo P, Braid M, Vaishnav R, Jonkheer SM, Zlobin A et al. (2002). Activation of Notch-1 signaling maintains the neoplastic phenotype in human Ras-transformed cells. Nat Med 8: 979–986.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Barbara Vonderhaar and Dr Gilbert H Smith for their critical review of the manuscript. We specially thank Novartis Pharmaceuticals for providing Gleevec.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Callahan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raafat, A., Zoltan-Jones, A., Strizzi, L. et al. Kit and PDGFR-α activities are necessary for Notch4/Int3-induced tumorigenesis. Oncogene 26, 662–672 (2007). https://doi.org/10.1038/sj.onc.1209823

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1209823

Keywords

This article is cited by

Search

Quick links