Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Identification of mutations that disrupt phosphorylation-dependent nuclear export of cyclin D1

Abstract

Although cyclin D1 is overexpressed in a significant number of human cancers, overexpression alone is insufficient to promote tumorigenesis. In vitro studies have revealed that inhibition of cyclin D1 nuclear export unmasks its neoplastic potential. Cyclin D1 nuclear export depends upon phosphorylation of a C-terminal residue, threonine 286, (Thr-286) which in turn promotes association with the nuclear exportin, CRM1. Mutation of Thr-286 to a non-phosphorylatable residue results in a constitutively nuclear cyclin D1 protein with significantly increased oncogenic potential. To determine whether cyclin D1 is subject to mutations that inhibit its nuclear export in human cancer, we have sequenced exon 5 of cyclin D1 in primary esophageal carcinoma samples and in cell lines derived from esophageal cancer. Our work reveals that cyclin D1 is subject to mutations in primary human cancer. The mutations identified specifically disrupt phosphorylation of cyclin D1 at Thr-286, thereby enforcing nuclear accumulation of cyclin D1. Through characterization of these mutants, we also define an acidic residue within the C-terminus of cyclin D1 that is necessary for recognition and phosphorylation of cyclin D1 by glycogen synthase kinase-3 beta. Finally, through construction of compound mutants, we demonstrate that cell transformation by the cancer-derived cyclin D1 alleles correlates with their ability to associate with and activate CDK4. Our data reveal that cyclin D1 is subject to mutations in primary human cancer that specifically disrupt phosphorylation-dependent nuclear export of cyclin D1 and suggest that such mutations contribute to the genesis and progression of neoplastic growth.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Adelaide J, Monges G, Derderian C, Seitz JF, Birnbaum D . (1995). Br J Cancer 71: 64–68.

  • Aktas H, Cai H, Cooper GM . (1997). Mol Cell Biol 17: 3850–3857.

  • Albanese C, Johnson J, Watanabe G, Eklund N, Vu D, Arnold A et al. (1995). J Biol Chem 270: 23589–23597.

  • Alt JR, Cleveland JL, Hannink M, Diehl JA . (2000). Genes Dev 14: 3102–3114.

  • Alt JR, Gladden AB, Diehl JA . (2002). J Biol Chem 277: 8517–8523.

  • Arber N, Lightdale C, Rotterdam H, Han KH, Sgambato A, Yap E et al. (1996). Cancer Epidemiol Biomarkers Prev 5: 457–459.

  • Bani-Hani K, Martin IG, Hardie LJ, Mapstone N, Briggs JA, Forman D et al. (2000). J Natl Cancer Inst 92: 1316–1321.

  • Bax B, Carter PS, Lewis C, Guy AR, Bridges A, Tanner R et al. (2001). Structure (Cambridge) 9: 1143–1152.

  • Beals CR, Sheridan CM, Turck CW, Gardner P, Crabtree GR . (1997). Science 275: 1930–1934.

  • Benzeno S, Diehl JA . (2004). J Biol Chem 279: 56061–56066.

  • Benzeno S, Narla G, Allina J, Cheng GZ, Reeves HL, Banck MS et al. (2004). Cancer Res 64: 3885–3891.

  • Bodrug SE, Warner BJ, Bath ML, Lindeman GJ, Harris AW, Adams JM . (1994). EMBO J 13: 2124–2130.

  • Calbo J, Parreno M, Sotillo E, Yong T, Mazo A, Garriga J et al. (2002). J Biol Chem 277: 50263–50274.

  • Cheng M, Olivier P, Diehl JA, Fero M, Roussel MF, Roberts JM et al. (1999). EMBO J 18: 1571–1583.

  • Cheng M, Sexl V, Sherr CJ, Roussel MF . (1998). Proc Natl Acad Sci USA 95: 1091–1096.

  • Collecchi P, Santoni T, Gnesi E, Giuseppe Naccarato A, Passoni A, Rocchetta M et al. (2000). Cytometry 42: 254–260.

  • Coqueret O . (2002). Gene 299: 35–55.

  • Dajani R, Fraser E, Roe SM, Young N, Good V, Dale TC et al. (2001). Cell 105: 721–732.

  • Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S et al. (2002). Nature 417: 949–954.

  • Diehl JA, Sherr CJ . (1997). Mol Cell Biol 17: 7362–7374.

  • Diehl JA, Cheng M, Roussel MF, Sherr CJ . (1998). Genes Dev 12: 3499–3511.

  • Diehl JA, Zindy F, Sherr CJ . (1997). Genes Dev 11: 957–972.

  • Diehl JA . (2002). Cancer Biol Ther 1: 226–231.

  • Doble BW, Woodgett JR . (2003). J Cell Sci 116: 1175–1186.

  • Farkas T, Hansen K, Holm K, Lukas J, Bartek J . (2002). J Biol Chem 277: 26741–26752.

  • Fiol CJ, Haseman JH, Wang YH, Roach PJ, Roeske RW, Kowalczuk M et al. (1988). Arch Biochem Biophys 267: 797–802.

  • Fiol CJ, Wang A, Roeske RW, Roach PJ . (1990). J Biol Chem 265: 6061–6065.

  • Frame S, Cohen P, Biondi RM . (2001). Mol Cell 7: 1321–1327.

  • Fraser E, Young N, Dajani R, Franca-Koh J, Ryves J, Williams RS et al. (2002). J Biol Chem 277: 2176–2185.

  • Fry DW, Bedford DC, Harvey PH, Fritsch A, Keller PR, Wu Z et al. (2001). J Biol Chem 276: 16617–16623.

  • Fry DW, Harvey PJ, Keller PR, Elliott WL, Meade M, Trachet E et al. (2004). Mol Cancer Ther 3: 1427–1438.

  • Fu M, Wang C, Li Z, Sakamaki T, Pestell RG . (2004). Endocrinology 145: 5439–5447.

  • Garnett MJ, Marais R . (2004). Cancer Cell 6: 313–319.

  • Gladden AB, Woolery R, Aggarwal P, Wasik MA, Diehl JA . (2005). Oncogene 25: 1620–1628.

  • Hagen T, Di Daniel E, Culbert AA, Reith AD . (2002). J Biol Chem 277: 23330–23335.

  • Hall M, Peters G . (1996). Adv Cancer Res 68: 67–108.

  • Harbour JW, Luo RX, Dei Santi A, Postigo AA, Dean DC . (1999). Cell 98: 859–869.

  • Hatakeyama M, Brill JA, Fink GR, Weinberg RA . (1994). Genes Dev 8: 1759–1771.

  • Hedgepeth CM, Deardorff MA, Rankin K, Klein PS . (1999). Mol Cell Biol 19: 7147–7157.

  • Hinds PW, Dowdy SF, Eaton EN, Arnold A, Weinberg RA . (1994). Proc Natl Acad Sci USA 91: 709–713.

  • Hirai H, Sherr CJ . (1996). Mol Cell Biol 16: 6457–6467.

  • Kauffmann-Zeh A, Rodriguez-Viciana P, Ulrich E, Gilbert C, Coffer P, Downward J et al. (1997). Nature 385: 544–548.

  • Kerkhoff E, Rapp UR . (1997). Mol Cell Biol 17: 2576–2586.

  • Kitagawa M, Higashi H, Jung HK, Suzuki-Takahashi I, Ikeda M, Tamai K et al. (1996). EMBO J 15: 7060–7069.

  • LaBaer J, Garrett MD, Stevenson LF, Slingerland JM, Sandhu C, Chou HS et al. (1997). Genes Dev 11: 847–862.

  • Lamb J, Ladha MH, McMahon C, Sutherland RL, Ewen ME . (2000). Mol Cell Biol 20: 8667–8675.

  • Landis MWPB, Li T, Sicinski P, Hinds PW . (2006). Cancer Cell 9: 13–22.

  • Lavoie JN, L'Allemain G, Brunet A, Muller R, Pouyssegur J . (1996). J Biol Chem 271: 20608–20616.

  • Leng X, Noble M, Adams PD, Qin J, Harper JW . (2002). Mol Cell Biol 22: 2242–2254.

  • Lin J, Beerm DG . (2004). Semin Oncol 31: 476–486.

  • Lovec H, Grzeschiczek A, Kowalski MB, Moroy T . (1994a). EMBO J 13: 3487–3495.

  • Lovec H, Sewing A, Lucibello FC, Muller R, Moroy T . (1994b). Oncogene 9: 323–326.

  • Lu F, Gladden AB, Diehl JA . (2003). Cancer Res 63: 7056–7061.

  • Lukas J, Jadayel D, Bartkova J, Nacheva E, Dyer MJ, Strauss M et al. (1994). Oncogene 9: 2159–2167.

  • Moreno-Bueno G, Rodriguez-Perales S, Sanchez-Estevez C, Hardisson D, Sarrio D, Prat J et al. (2003). Oncogene 22: 6115–6118.

  • Muraoka RS, Lenferink AE, Law B, Hamilton E, Brantley DM, Roebuck LR et al. (2002). Mol Cell Biol 22: 2204–2219.

  • Muraoka RS, Lenferink AE, Simpson J, Brantley DM, Roebuck LR, Yakes FM et al. (2001). J Cell Biol 153: 917–932.

  • Neuman E, Ladha MH, Lin N, Upton TM, Miller SJ, DiRenzo J et al. (1997). Mol Cell Biol 17: 5338–5347.

  • Park IK, Roach P, Bondor J, Fox SP, DePaoli-Roach AA . (1994). J Biol Chem 269: 944–954.

  • Petre CE, Wetherill YB, Danielsen M, Knudsen KE . (2002). J Biol Chem 277: 2207–2215.

  • Quelle DE, Ashmun RA, Shurtleff SA, Kato JY, Bar-Sagi D, Roussel MF et al. (1993). Genes Dev 7: 1559–1571.

  • Rimerman RA, Gellert-Randleman A, Diehl JA . (2000). J Biol Chem 275: 14736–14742.

  • Rodriguez-Viciana P, Warne PH, Dhand R, Vanhaesebroeck B, Gout I, Fry MJ et al. (1994). Nature 370: 527–532.

  • Sears R, Nuckolls F, Haura E, Taya Y, Tamai K, Nevins JR . (2000). Genes Dev 14: 2501–2514.

  • Sherr CJ, Roberts JM . (1999). Genes Dev 13: 1501–1512.

  • Solomon DA, Wang Y, Fox SR, Lambeck TC, Giesting S, Lan Z et al. (2003). J Biol Chem 278: 30339–30347.

  • Summers MD, Smith GE . (1987). Tex Agric Exp St Bull 1555: 1–56.

  • ter Haar E, Coll JT, Austen DA, Hsiao HM, Swenson L, Jain J . (2001). Nat Struct Biol 8: 593–596.

  • Welcker M, Orian A, Jin J, Grim JA, Harper JW, Eisenman RN et al. (2004). Proc Natl Acad Sci USA 101: 9085–9090.

  • Welcker M, Singer J, Loeb KR, Grim J, Bloecher A, Gurien-West M et al. (2003). Mol Cell 12: 381–392.

  • Winston JT, Coats SR, Wang YZ, Pledger WJ . (1996). Oncogene 12: 127–134.

  • Yost C, Farr III GH, Pierce SB, Ferkey DM, Chen MM, Kimelman D . (1998). Cell 93: 1031–1041.

  • Yu QSE, Geng Y, Ahnstrom M, Zagozdzon A, Kong Y, Gardner H et al. (2006). Cancer Cell 9: 23–32.

  • Zhang F, Phiel CJ, Spece L, Gurvich N, Klein PS . (2003). J Biol Chem 278: 33067–33077.

  • Zwijsen RM, Wientjens E, Klompmaker R, van der Sman J, Bernards R, Michalides RJ . (1997). Cell 88: 405–415.

Download references

Acknowledgements

We thank J Woodgett for providing GSK-3β cDNAs. This work was supported by a grant from the National Institutes of Health (CA93237, CA111360) and the WW Smith Charitable Trust (JAD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J A Diehl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benzeno, S., Lu, F., Guo, M. et al. Identification of mutations that disrupt phosphorylation-dependent nuclear export of cyclin D1. Oncogene 25, 6291–6303 (2006). https://doi.org/10.1038/sj.onc.1209644

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1209644

Keywords

Search

Quick links