Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Contribution of somatic mutations in the mitochondrial genome to the development of cancer and tolerance against anticancer drugs

Abstract

Mitochondrial defects have long been suspected to play an important role in the development of cancer. Although most cancer cells harbor somatic mutations in mitochondrial DNA (mtDNA), the question of whether such mutations positively contribute to the development of cancer remained unclear. To clarify the role of mutant mtDNA excluding effects by the nuclear background, we focus on a method of transmitochondrial cybrids. Tumors were formed by transplanting cybrids with or without mutant mtDNA into nude mice and compared each size, revealing that mutant cybrids enhanced tumorigenesis. Next, we discuss a method for excluding the possibility of secondary nuclear mutations that may affect tumorigenesis. Mitochondrial genes that had been converted from mitochondrial to nuclear codons and equipped with a mitochondrial-targeting sequence were introduced into the nucleus of mutant cybrids. The gene products complemented the dysfunction, and reduced the promotion of tumors. By these methods, we concluded that mutant mitochondria positively and directly contribute to tumorigenesis. Since apoptosis occurred less frequently in the mutant versus wild-type cybrids in tumors, pathogenic mtDNA mutations contribute to the promotion of tumors by preventing apoptosis. Finally, we discuss the role of mutant mtDNA in conferring tolerance against anticancer drugs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Amuthan G, Biswas G, Zyang SY, Klein-Szanto A, Vijayasarathy C, Avadhani NG . (2001). EMBO J 20: 1910–1920.

  • Attardi G, Schatz G . (1988). Annu Rev Cell Biol 4: 289–333.

  • Attardi G, Yoneda M, Chomyn A . (1995). Biochim Biophys Acta 1271: 241–248.

  • Bayona-Bafaluy MP, Manfredi G, Moraes CT . (2003). Nucl Acids Res 31: e98.

  • Biswas G, Guha M, Avadhani NG . (2005). Gene 354: 132–139.

  • Carew JS, Huang P . (2002). Mol Cancer 1: 9.

  • Chomyn A, Meola G, Bresolin N, Lai ST, Scarlato G, Attardi G . (1991). Mol Cell Biol 11: 2236–2244.

  • Coller HA, Khrapko K, Bodyak ND, Nekhaeva E, Herrero-jimenez P, Thilly WG . (2001). Nat Genet 28: 147–150.

  • Cuezva JM, Chen G, Alonso AM, Isidoro A, Misek DE, Hanash SM et al. (2004). Carcinogenesis 25: 1157–1163.

  • Cuezva JM, Krajewska M, de Heredia ML, Krajewski S, Santamaria G, Kim H et al. (2002). Cancer Res 62: 6674–6681.

  • D'Aurelio M, Gajewski CD, Lin MT, Mauck WM, Shao LZ, Lenaz G et al. (2004). Hum Mol Genet 13: 3171–3179.

  • Desjardins P, de Muys JM, Morais R . (1986). Somat Cell Mol Genet 12: 133–139.

  • DiMauro S, Bonilla E, Zeviani M, Nakagawa M, DeVivo DC . (1985). Ann Neurol 17: 521–538.

  • Dunbar DR, Moonie PA, Jacobs HT, Holt IJ . (1995). Proc Natl Acad Sci USA 92: 6562–6566.

  • Evans AR, Limp-Foster M, Kelley MR . (2000). Mutat Res 461: 83–108.

  • Fliss MS, Usadel H, Caballero OL, Wu L, Buta MR, Eleff SM et al. (2000). Science 287: 2017–2019.

  • Geromel V, Kadhom N, Cebalos-Picot I, Ouari O, Polidori A, Munnich A et al. (2001). Hum Mol Genet 10: 1221–1228.

  • Ghelli A, Zanna C, Porcelli AM, Schapira AH, Martinuzzi A, Carelli V et al. (2003). J Biol Chem 278: 4145–4150.

  • Guy J, Qi X, Pallotti F, Schon EA, Manfredi G, Carelli V et al. (2002). Ann Neurol 52: 534–542.

  • Hayashi J, Ohta S, Kikuchi A, Takemitsu M, Goto Y, Nonaka I . (1991a). Proc Natl Acad Sci USA 88: 10614–10618.

  • Hayashi J, Ohta S, Takai D, Miyabayashi S, Sakuta R, Goto Y et al. (1993). Biochem Biophys Res Commun 197: 1049–1055.

  • Hayashi J, Tanaka M, Sato W, Ozawa T, Yonekawa H, Kagawa Y et al. (1990). Biochem Biophys Res Commun 167: 216–221.

  • Hayashi J, Yonekawa H, Watanabe S, Nonaka I, Momoi M, Kagawa Y et al. (1991b). Somatic cell genetical approaches to mitochondrial diseases. In: Sato T, DiMauro S (eds). Progress in Neuro-pathology. Raven: New York, pp 93–102.

    Google Scholar 

  • Hayashi JI, Takemitu M, Nonaka M . (1992). Somatic Cell Mol Genet 18: 123–129.

  • Holt IJ, Harding AE, Petty RK, Morgan-Hughes JA . (1990). Am J Hum Genet 46: 428–433.

  • Inoue K, Ito S, Takai D, Soejima A, Shisa H, LePecq JB et al. (1997). J Biol Chem 272: 15510–15515.

  • Isidoro A, Martinez M, Fernandez PL, Ortega AD, Santamaria G, Chamorro M et al. (2004). Biochem J 378: 17–20.

  • King MP, Attardi G . (1989). Science 246: 500–503.

  • King MP, Koga Y, Davidson M, Schon EA . (1992). Mol Cell Biol 12: 480–490.

  • Klein TM, Fitzpatrick-McElligott S . (1993). Curr Opin Biotechnol 4: 583–590.

  • Kujoth GC, Hiona A, Pugh TD, Someya S, Panzer K, Wohlgemuth SE et al. (2005). Science 309: 481–484.

  • Lee SR, Kwon KS, Kim SR, Rhee SG . (1998). J Biol Chem 273: 15366–15372.

  • Lightowlers RN, Chinnery PF, Turnbull DM, Howell N . (1997). Trends Genet 13: 450–455.

  • Linnartz B, Anglmayer R, Zanssen S . (2004). Cancer Res 64: 1966–1971.

  • Liu VW, Shi HH, Cheung AN, Chiu PM, Leung TW, Nagley P et al. (2001). Cancer Res 61: 5998–6001.

  • Manfredi G, Fu J, Ojaimi J, Sadlock JE, Kwong JQ, Guy J et al. (2002). Nat Genet 30: 394–399.

  • Matsuzawa A, Saegusa K, Noguchi T, Sadamitsu C, Nishitoh H, Nagai S et al. (2005). Nat Immunol 6: 587–592.

  • Maximo V, Soares P, Lima J, Cameselle-Teijeiro J, Sobrinho-Simoes M . (2002). Am J Pathol 160: 1857–1865.

  • McCord JM . (2000). Am J Med 108: 652–659.

  • Michiels C, Minet E, Mottet D, Raes M . (2002). Free Radic Biol Med 33: 1231–1242.

  • Moraes CT, Dey R, Barrientos A . (2001). Methods Cell Biol 65: 397–412.

  • Morais R, Zinkewich-Peotti K, Parent M, Wang H, Babai F, Zollinger M . (1994). Cancer Res 54: 3889–3896.

  • Nakano K, Ohsawa I, Yamagata K, Nakayama T, Sasaki K, Tarashima M et al. (2003). Mitochondrion 3: 21–27.

  • Nakashima-Kamimura N, Asoh S, Ishibashi Y, Mukai Y, Shidara Y, Oda H et al. (2005). J Cell Sci 118: 5357–5367.

  • Nishikawa M, Nishiguchi S, Shiomi S, Tamori A, Koh N, Takeda T et al. (2001). Cancer Res 61: 1843–1845.

  • Ohta S . (2003). Curr Med Chem 10: 2485–2494.

  • Parrella P, Xiao Y, Fliss M, Sanchez-Cespedes M, Mazzarelli P, Rinaldi M et al. (2001). Cancer Res 61: 7623–7626.

  • Petros JA, Baumann AK, Ruiz-Pesini E, Amin MB, Sun CQ, Hall J et al. (2005). Proc Natl Acad Sci USA 102: 719–724.

  • Polyak K, Li Y, Zhu H, Lengauer C, Willson JK, Markowitz SD et al. (1998). Nat Genet 20: 291–293.

  • Qian W, Nishikawa M, Haque AM, Hirose M, Mashimo M, Sato E et al. (2005). Am J Physiol Cell Physiol 289: 1466–1475.

  • Shidara Y, Yamagata K, Kanamori T, Nakano K, Kwong JQ, Manfredi G et al. (2005). Cancer Res 65: 1655–1663.

  • Shin YK, Yoo BC, Chang HJ, Jeon E, Hong SH, Jung MS et al. (2005). Cancer Res 65: 3162–3170.

  • Singh KK, Russell J, Sigara B, Zhang T, Williams J, Keshav KF . (1999). Oncogene 18: 6641–6646.

  • Takamatsu C, Umeda S, Ohsato T, Ohno T, Abe Y, Fukuoh A et al. (2002). EMBO J 3: 451–456.

  • Tan DJ, Bai RK, Wong LJ . (2002). Cancer Res 62: 972–976.

  • Tang JT, Yamazaki H, Inoue T, Koizumi M, Yoshida K, Ozeki S et al. (1999). Anticancer Res 19: 4959–4964.

  • Tatuch Y, Christodoulou J, Feigenbaum A, Clarke JT, Wherret J, Smith C et al. (1992). Am J Hum Genet 50: 852–858.

  • Trifunovic A, Hansson A, Wredenberg A, Rovio AT, Dufour E, Khvorostov I et al. (2005). Proc Natl Acad Sci USA 102: 17993–17998.

  • Wang J, Silva JP, Gustafsson CM, Rustin P, Larsson NG . (2001). Proc Natl Acad Sci USA 98: 4038–4043.

  • Warburg O . (1930). The Metabolism of Tumors. Constable Co. Ltd.: London.

    Google Scholar 

  • Warburg O . (1956). Science 123: 309–314.

  • Wong LJ, Lueth M, Li XN, Lau CC, Vogel H . (2003). Cancer Res 63: 3866–3871.

  • Xu RH, Pelicano H, Zhou Y, Carew JS, Feng L, Bhalla KN et al. (2005). Cancer Res 15: 613–621.

  • Yasukawa T, Yang MY, Jacobs HT, Holt IJ . (2005). Mol Cell 18: 651–662.

  • Yeh JJ, Lunetta KL, van Orsouw NJ, Moore Jr FD, Mutter GL, Vijg J et al. (2000). Oncogene 19: 2060–2066.

  • Yoneda M, Chomyn A, Martinuzzi A, Hurko O, Attardi G . (1992). Proc Natl Acad Sci USA 89: 11164–11168.

  • Yoneda M, Katsumata K, Hayakawa M, Tanaka M, Ozawa T . (1995). Biochem Biophys Res Commun 209: 723–729.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Ohta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohta, S. Contribution of somatic mutations in the mitochondrial genome to the development of cancer and tolerance against anticancer drugs. Oncogene 25, 4768–4776 (2006). https://doi.org/10.1038/sj.onc.1209602

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1209602

Keywords

This article is cited by

Search

Quick links