Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Hematopoietic cells from gadd45a-deficient and gadd45b-deficient mice exhibit impaired stress responses to acute stimulation with cytokines, myeloablation and inflammation

Abstract

The gadd45 family of gene(s) is rapidly induced by genotoxic stress or by differentiation-inducing cytokines. Using bone marrow (BM) from gadd45a−/−, gadd45b−/− and wild-type (wt) mice, we investigated their role in stress responses of myeloid cells to acute stimulation with differentiating cytokines, myelotoxic agents and inflammatory substances. Bone marrow cells from gadd45a−/− and gadd45b−/− mice displayed compromised myeloid differentiation and higher apoptosis in vitro, following acute stimulation with a variety of differentiating cytokines. Intriguingly, gadd45a−/− and gadd45b−/− colony forming units granulocyte/macrophage progenitors displayed prolonged proliferation capacity compared to wt controls upon re-plating in methylcellulose supplemented with interleukin-3. The recovery of the BM myeloid compartment following 5-Fluorouracil-induced myelo-ablation was much slower in gadd45a−/− and gadd45b−/− mice compared to wt controls. Furthermore, the response of myeloid cells to inflammatory stress, inflicted via intraperitoneal administration of sodium caseinate was impaired in gadd45a−/− and gadd45b−/− mice compared to age-matched wt mice, as indicated by lower percentage of Gr-1-positive cells in the BM and lower number of myeloid cells in peritoneal exudates. Overall, these data indicate that both gadd45a and gadd45b play a role in modulating physiological stress responses of myeloid cells to acute stimulation with differentiating cytokines, myelo-ablation and inflammation. These findings should aid in understanding the response of normal and malignant hematopoietic cells to physiological and chemical stressors including anticancer agents.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Abdollahi A, Lord KA, Hoffman-Liebermann B, Liebermann DA . (1991). Oncogene 6: 165–167.

  • Amanullah A, Azam N, Balliet A, Hollander C, Hoffman B, Fornace Jr A et al. (2003). Nature 424: 741–742.

  • Asada M, Yamada T, Ichijo H, Delia D, Miyazono K, Fukumuro K et al. (1999). EMBO J 18: 1223–1234.

  • Azam N, Vairapandi M, Zhang W, Hoffman B, Liebermann DA, Azam N et al. (2001). J Biol Chem 276: 2766–2774.

  • Beadling C, Johnson KW, Smith KA . (1993). Proc Natl Acad Sci USA 90: 2719–2723.

  • Cheng T, Rodrigues N, Shen H, Yang Y, Dombkowski D, Sykes M et al. (2000). Science 287: 1804–1808.

  • Daems WT, Koerten HK . (1978). Cell Tissue Res 190: 47–60.

  • De Smaele E, Zazzeroni F, Papa S, Nguyen DU, Jin R, Jones J et al. (2001). Nature 414: 308–313.

  • Gupta M, Gupta SK, Balliet AG, Hollander MC, Fornace AJ, Hoffman B et al. (2005). Oncogene 24: 7170–7179.

  • Harkin DP, Bean JM, Miklos D, Song YH, Truong VB, Englert C et al. (1999). Cell 97: 575–586.

  • Hestdal K, Ruscetti FW, Ihle JN, Jacobsen SEW, Dubois CM, Kopp WC et al. (1991). J Immunol 147: 22–28.

  • Hildesheim J, Bulavin DV, Anver MR, Alvord WG, Hollander MC, Vardanian L et al. (2002). Cancer Res 62: 7305–7315.

  • Hoffmeyer A, Piekorz R, Moriggl R, Ihle JN . (2001). Mol Cell Biol 21: 3137–3143.

  • Hollander MC, Sheikh MS, Bulavin DV, Lundgren K, Augeri-Henmueller L, Shehee R et al. (1999). Nat Genet 23: 176–184.

  • Kastan MB, Zhan Q, El-Deiry WS, Carrier F, Jacks T, Walsh WV et al. (1992). Cell 71: 587–597.

  • Lang R, Patel D, Morris JJ, Rutschman RL, Murray PJ . (2002). J Immunol 169: 2253–2263.

  • Liebermann DA, Hoffman B . (1994). Curr Opin Hematol 1: 24–32.

  • Liebermann DA, Hoffman B . (2003). Blood Cells Mol Dis 31: 213–228.

  • Liebermann DA, Hoffman-Liebermann B . (1989). Oncogene 4: 583–592.

  • Lu B, Ferrandino AF, Flavell RA . (2004). Nat Immunol 5: 38–44.

  • Lu B, Yu H, Chow C, Li B, Zheng W, Davis RJ et al. (2001). Immunity 14: 583–590.

  • Marone M, Bonanno G, Rutella S, Leone G, Scambia G, Pierelli L . (2002). Leukemia Lymphoma 43: 51–57.

  • Metcalf D . (1989). Nature 339: 27–30.

  • Moriggl R, Topham DJ, Teglund S, Sexl V, McKay C, Wang D et al. (1999). Immunity 10: 249–259.

  • Nakahata T, Ogawa M . (1982). Proc Natl Acad Sci USA 79: 3843.

  • Nguyen HQ, Hoffman-Liebermann B, Liebermann DA . (1993). Cell 72: 197–209.

  • Papa S, Zazzeroni F, Bubici C, Jayawardena S, Alvarez K, Matsuda S et al. (2004). Nat Cell Biol 6: 146–153.

  • Platanias LC . (2003). Blood 101: 4467–4479.

  • Randall TD, Weissman IL . (1997). Blood 89: 3596–3606.

  • Richman CM, Weiner RS, Yankee RA . (1976). Blood 47: 1031–1039.

  • Selvakumaran M, Lin HK, Tjin Tham Sjin R, Reed J, Liebermann DA, Hoffman B . (1994). Mol Cell Biol 14: 2352–2360.

  • Smith ML, Chen IT, Zhan Q, Bae I, Chen CY, Gilmer TM et al. (1994). Science 266: 1376–1380.

  • Smith ML, Kontny HU, Zhan Q, Sreenath A, O'Connor PM, Fornance Jr AJ . (1996). Oncogene 13: 2255–2263.

  • Takekawa M, Saito H . (1998). Cell 95: 521–530.

  • Takekawa M, Tatebayashi K, Itoh F, Adachi M, Imai K, Saito H . (2002). EMBO J 21: 6473–6482.

  • Taylor PR, Brown GD, Geldhof AB, Martinex-Pomores L, Gordon S . (2003). Eur J Immunol 33: 2090–2097.

  • Teglund S, McKay C, Schuetz E, van Deursen JM, Stravopodis D, Wang D et al. (1998). Cell 93: 841–850.

  • Vairapandi M, Azam N, Balliet AG, Hoffman B, Liebermann DA . (2000). J Biol Chem 275: 16810–16819.

  • Vairapandi M, Balliet AG, Fornance Jr AJ, Hoffman B, Liebermann DA . (1996). Oncogene 12: 2579–2594.

  • Vairapandi M, Balliet AG, Hoffman B, Liebermann DA . (2002). J Cell Physiol 192: 327–338.

  • Wang XW, Zhan Q, Coursen JD, Khan MA, Kontny HU, Yu L et al. (1999). Proc Natl Acad Sci USA 96: 3706–3711.

  • Yang J, Zhu H, Murphy TL, Ouyang W, Murphy KM . (2001). Nat Immunol 2: 157–164.

  • Yoo J, Ghiassi M, Jirmanova L, Balliet AG, Hoffman B, Fornace Jr AJ et al. (2003). J Biol Chem 278: 43001–43007.

  • Zazzeroni F, Papa S, Algeciras-Schimnich A, Alvarez K, Melis T, Bubici C et al. (2003). Blood 102: 3270–3279.

  • Zhan Q, Antinore MJ, Wang XW, Carrier F, Smith ML, Harris CC et al. (1999). Oncogene 18: 2892–2900.

  • Zhan Q, Lord KA, Alamo Jr I, Hollander MC, Carrier F, Ron D et al. (1994). Mol Cell Biol 14: 2361–2371.

  • Zhang W, Bae I, Krishnaraju K, Azam N, Fan W, Smith K et al. (1999). Oncogene 18: 4899–4907.

Download references

Acknowledgements

We thank Dr Albert Fornace Jr for the Gadd45a−/− mice. This work was supported by RO1 HL70530-03 (DL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D A Liebermann.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gupta, S., Gupta, M., Hoffman, B. et al. Hematopoietic cells from gadd45a-deficient and gadd45b-deficient mice exhibit impaired stress responses to acute stimulation with cytokines, myeloablation and inflammation. Oncogene 25, 5537–5546 (2006). https://doi.org/10.1038/sj.onc.1209555

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1209555

Keywords

This article is cited by

Search

Quick links