Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

A functional interaction between ATF7 and TAF12 that is modulated by TAF4

Abstract

The ATF7 proteins, which are members of the cyclic AMP responsive binding protein (CREB)/activating transcription factor (ATF) family of transcription factors, display quite versatile properties: they can interact with the adenovirus E1a oncoprotein, mediating part of its transcriptional activity; they heterodimerize with the Jun, Fos or related transcription factors, likely modulating their DNA-binding specificity; they also recruit to the promoter a stress-induced protein kinase (JNK2). In the present study, we investigate the functional relationships of ATF7 with hsTAF12 (formerly hsTAFII20/15), which has originally been identified as a component of the general transcription factor TFIID. We show that overexpression of hsTAF12 potentiates ATF7-induced transcriptional activation through direct interaction with ATF7, suggesting that TAF12 is a functional partner of ATF7. In support of this conclusion, chromatin immunoprecipitation experiments confirm the interaction of ATF7 with TAF12 on an ATF7-responsive promoter, in the absence of any artificial overexpression of both proteins. We also show that the TAF12-dependent transcriptional activation is competitively inhibited by TAF4. Although both TAF12 isoforms (TAF12-1 and -2, formerly TAFII20 and TAFII15) interact with the ATF7 activation region through their histone-fold domain, only the largest, hsTAF12-1, mediates transcriptional activation through its N-terminal region.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Abbreviations

ATF:

activating transcription factor

TBP:

TATA-binding protein

TAF:

TBP-associated factor

HFD:

histone fold domain

TFIID:

transcription factor IID

IP:

immunoprecipitation

MAP kinase:

mitogen-activated protein kinase

JNK:

Jun N-terminal kinase

CREB:

cyclic AMP responsive binding protein

b-LZ:

basic region leucine zipper

CRE:

cyclic AMP responsive binding

SAGA:

SPT-ADA-GCN5-acetyltransferase

STAGA:

SPT3-TAF9-GCN5-L acetyltransferase

PCAF:

p300/CREB-binding protein-associated factor

TFTC:

TBP-free TAF-containing complex

CMV:

cytomegalovirus

TK:

thymidine kinase

GST:

glutathione S-transferase

HA:

hemaglutinin

WB:

Western blot

ChIP:

chromatin-immunoprecipitation

References

  • Acker J, de Graaff M, Cheynel I, Khazak V, Kedinger C and Vigneron M . (1997). J. Biol. Chem., 272, 16815–16821.

  • Albright SR and Tjian R . (2000). Gene, 242, 1–13.

  • Bell B and Tora L . (1999). Exp. Cell Res., 246, 11–19.

  • Bhaumik SR and Green MR . (2002). Mol. Cell. Biol., 22, 7365–7371.

  • Bocco JL, Bahr A, Goetz J, Hauss C, Kallunki T, Kedinger C and Chatton B . (1996). Oncogene, 12, 1971–1980.

  • Brand M, Leurent C, Mallouh V, Tora L and Schultz P . (1999). Science, 286, 2151–2153.

  • Chang CI, Xu BE, Akella R, Cobb MH and Goldsmith EJ . (2002). Mol. Cell, 9, 1241–1249.

  • Chatton B, Bahr A, Acker J and Kedinger C . (1995). Biotechniques, 18, 142–145.

  • Chatton B, Bocco JL, Gaire M, Hauss C, Reimund B, Goetz J and Kedinger C . (1993). Mol. Cell. Biol., 13, 561–570.

  • Chatton B, Bocco JL, Goetz J, Gaire M, Lutz Y and Kedinger C . (1994). Oncogene, 9, 375–385.

  • Cline J, Braman JC and Hogrefe HH . (1996). Nucleic Acids Res., 24, 3546–3551.

  • Dedon PC, Soults JA, Allis CD and Gorovsky MA . (1991). Anal. Biochem., 197, 83–90.

  • De Graeve F, Bahr A, Sabapathy KT, Hauss C, Wagner EF, Kedinger C and Chatton B . (1999). Oncogene, 18, 3491–3500.

  • de Wet JR, Wood KV, DeLuca M, Helinski DR and Subramani S . (1987). Mol. Cell. Biol., 7, 725–737.

  • Derijard B, Hibi M, Wu IH, Barrett T, Su B, Deng T, Karin M and Davis RJ . (1994). Cell, 76, 1025–1037.

  • Dikstein R, Zhou S and Tjian R . (1996). Cell, 87, 137–146.

  • Freiman RN, Albright SR, Zheng S, Sha WC, Hammer RE and Tjian R . (2001). Science, 293, 2084–2087.

  • Gaire M, Chatton B and Kedinger C . (1990). Nucleic Acids Res., 18, 3467–3473.

  • Gangloff Y, Romier C, Thuault S, Werten S and Davidson I . (2001). Trends Biochem. Sci., 26, 250–257.

  • Gangloff YG, Werten S, Romier C, Carre L, Poch O, Moras D and Davidson I . (2000). Mol. Cell. Biol., 20, 340–351.

  • Goetz J, Chatton B, Mattei MG and Kedinger C . (1996). J. Biol. Chem., 271, 29589–29598.

  • Ho DT, Bardwell AJ, Abdollahi M and Bardwell L . (2003). J. Biol. Chem., 278, 32662–32672.

  • Hoffmann A, Chiang CM, Oelgeschlager T, Xie X, Burley SK, Nakatani Y and Roeder RG . (1996). Nature, 380, 356–359.

  • Hoffmann A, Oelgeschlager T and Roeder RG . (1997). Proc. Natl. Acad. Sci. USA, 94, 8928–8935.

  • Hoffmann A and Roeder RG . (1996). J. Biol. Chem., 271, 18194–18202.

  • Ivashkiv LB, Liou HC, Kara CJ, Lamph WW, Verma IM and Glimcher LH . (1990). Mol. Cell. Biol., 10, 1609–1621.

  • Jacq X, Brou C, Lutz Y, Davidson I, Chambon P and Tora L . (1994). Cell, 79, 107–117.

  • Kaszubska W, van Huijsduijnen RH, Ghersa P, De Raemy-Schenk AM, Chen BP, Hai T, De Lamarter JF and Whelan J . (1993). Mol. Cell. Biol., 13, 7180–7190.

  • Kumar V and Chambon P . (1988). Cell, 55, 145–156.

  • Lavigne AC, Gangloff YG, Carre L, Mengus G, Birck C, Poch O, Romier C, Moras D and Davidson I . (1999). Mol. Cell. Biol., 19, 5050–5060.

  • Leurent C, Sanders S, Ruhlmann C, Mallouh V, Weil PA, Kirschner DB, Tora L and Schultz P . (2002). EMBO J., 21, 3424–3433.

  • Leurent C, Sanders SL, Demeny MA, Garbett KA, Ruhlmann C, Weil PA, Tora L and Schultz P . (2004). EMBO J., 23, 719–727.

  • Liu F and Green MR . (1990). Nature, 345, 361–364.

  • Livingstone C, Patel G and Jones N . (1995). EMBO J., 14, 1785–1797.

  • Maekawa T, Sakura H, Kanei-Ishii C, Sudo T, Yoshimura T, Fujisawa J, Yoshida M and Ishii S . (1989). EMBO J., 8, 2023–2028.

  • Martinez E . (2002). Plant Mol. Biol., 50, 925–947.

  • Martinez E, Palhan VB, Tjernberg A, Lymar ES, Gamper AM, Kundu TK, Chait BT and Roeder RG . (2001). Mol. Cell. Biol., 21, 6782–6795.

  • Mazzarelli JM, Mengus G, Davidson I and Ricciardi RP . (1997). J. Virol., 71, 7978–7983.

  • Mencia M, Moqtaderi Z, Geisberg JV, Kuras L and Struhl K . (2002). Mol. Cell, 9, 823–833.

  • Mengus G, Gangloff YG, Carre L, Lavigne AC and Davidson I . (2000). J. Biol. Chem., 275, 10064–10071.

  • Mengus G, May M, Carre L, Chambon P and Davidson I . (1997). Genes Dev., 11, 1381–1395.

  • Mengus G, May M, Jacq X, Staub A, Tora L, Chambon P and Davidson I . (1995). EMBO J., 14, 1520–1531.

  • Munz C, Psichari E, Mandilis D, Lavigne AC, Spiliotaki M, Oehler T, Davidson I, Tora L, Angel P and Pintzas A . (2003). J. Biol. Chem., 278, 21510–21516.

  • Perletti L, Dantonel JC and Davidson I . (1999). J. Biol. Chem., 274, 15301–15304.

  • Pham AD, Muller S and Sauer F . (1999). Mech. Dev., 84, 3–16.

  • Pollard H, Remy JS, Loussouarn G, Demolombe S, Behr JP and Escande D . (1998). J. Biol. Chem., 273, 7507–7511.

  • Purrello M, Di Pietro C, Viola A, Rapisarda A, Stevens S, Guermah M, Tao Y, Bonaiuto C, Arcidiacono A, Messina A, Sichel G, Grzeschik KH and Roeder R . (1998). Oncogene, 16, 1633–1638.

  • Shen WC, Bhaumik SR, Causton HC, Simon I, Zhu X, Jennings EG, Wang TH, Young RA and Green MR . (2003). EMBO J., 22, 3395–3402.

  • Steghens JP, Min KL and Bernengo JC . (1998). Biochem. J., 336 (Part 1), 109–113.

  • Timmers HT and Tora L . (2005). Trends Biochem. Sci., 30, 7–10.

  • Tora L . (2002). Genes Dev., 16, 673–675.

  • van Dam H, Wilhelm D, Herr I, Steffen A, Herrlich P and Angel P . (1995). EMBO J., 14, 1798–1811.

  • Walker AK, Rothman JH, Shi Y and Blackwell TK . (2001). EMBO J., 20, 5269–5279.

  • Wang EH, Zou S and Tjian R . (1997). Gene Dev., 11, 2658–2669.

  • Werten S, Mitschler A, Romier C, Gangloff YG, Thuault S, Davidson I and Moras D . (2002). J. Biol. Chem., 277, 45502–45509.

  • Whelan J, Ghersa P, Hooft van Huijsduijnen R, Gray J, Chandra G, Talabot F and DeLamarter JF . (1991). Nucleic Acids Res., 19, 2645–2653.

  • Xiao JH, Davidson I, Matthes H, Garnier JM and Chambon P . (1991). Cell, 65, 551–568.

  • Xie X, Kokubo T, Cohen SL, Mirza UA, Hoffmann A, Chait BT, Roeder RG, Nakatani Y and Burley SK . (1996). Nature, 380, 316–322.

Download references

Acknowledgements

We thank L Tora, YG Gangloff, G Mengus, T Oegelschläger and M Vigneron for gifts and helpful discussions. This work was supported by funds and/or fellowships from the Centre National de la Recherche Scientifique, the Institut National de la Recherche Médicale, the Université Louis Pasteur de Strasbourg, the French Ministry of Research, the Association pour la Recherche sur le Cancer (contracts 5701 and 4521) and the Ligue Nationale contre le Cancer – Comités Alsace et Vosges.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Chatton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamard, PJ., Dalbies-Tran, R., Hauss, C. et al. A functional interaction between ATF7 and TAF12 that is modulated by TAF4. Oncogene 24, 3472–3483 (2005). https://doi.org/10.1038/sj.onc.1208565

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1208565

Keywords

Search

Quick links