Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Destabilization of cyclin D1 message plays a critical role in cell cycle exit upon mitogen withdrawal

Abstract

Cyclin D1 is critical for entry into, continuation of, and exit from the cell division cycle. Mitogen stimulation of quiescent cells induces cyclin D1 expression in a transcription-dependent manner. In actively cycling cells, on the other hand, fluctuation of cyclin D1 protein levels through the cell cycle is post-transcriptionally regulated. Cyclin D1 is expressed at low levels during S phase to allow efficient DNA synthesis, and induced to high levels in G2 phase through Ras activity to commit the cells to continuing cell cycle progression. Once induced in G2 phase, cyclin D1 expression becomes Ras independent through the next G1 phase, where it promotes G1/S transition. When mitogenic signaling is abrogated, however, cyclin D1 fails to increase during G2 phase and the cell becomes arrested in the next G1 phase. In this way, the expression levels of cyclin D1 in G2 phase determine the fate of the next cell cycle. Despite its importance of the mechanism of cyclin D1 suppression upon mitogen withdrawal is unknown. Using both quantitative fluorescence microscopy and biochemical analyses, we have found that, upon serum deprivation, cyclin D1 mRNA is downmodulated without any decline in its rate of transcription. Furthermore, cyclin D1 mRNA half-life becomes shorter when serum is removed. These results demonstrate that cyclin D1 message destabilization plays a critical role in cyclin D1 suppression during G2 phase of serum-deprived cultures, and therefore in the withdrawal from the cell cycle.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Agami R and Bernards R . (2000). Cell, 102, 55–66.

  • Aktas H, Cai H and Cooper GM . (1997). Mol. Cell. Biol., 17, 3850–3857.

  • Albanese C, Johnson J, Watanabe G, Eklund N, Vu D, Arnold A and Pestell RG . (1995). J. Biol. Chem., 270, 23589–23597.

  • Albrecht JH and Hansen LK . (1999). Cell Growth Differ., 10, 397–404.

  • Albrecht JH, Hoffman JS, Kren BT and Steer CJ . (1993). Am. J. Physiol., 265, G857–G864.

  • Amanatullah DF, Zafonte BT, Albanese C, Fu M, Messiers C, Hassell J and Pestell RG . (2001). Methods Enzymol., 333, 116–127.

  • Baldin V, Lukas J, Marcote MJ, Pagano M and Draetta G . (1993). Genes Dev., 7, 812–821.

  • Blagosklonny MV, Blagosklonny MV, Pardee AB and Pardee AB . (2002). Cell Cycle, 1, 103–110.

  • Briata P, Ilengo C, Corte G, Moroni C, Rosenfeld MG, Chen C-Y and Gherzi R . (2003). Mol. Cell, 12, 1201–1211.

  • Casanovas O, Miro F, Estanyol JM, Itarte E, Agell N and Bachs O . (2000). J. Biol. Chem., 275, 35091–35097.

  • Chen CY and Shyu AB . (1995). Trends Biochem. Sci., 20, 465–470.

  • Ciarmatori S, Scott PH, Sutcliffe JE, McLees A, Alzuherri HM, Dannenberg J-H, te Riele H, Grummt I, Voit R and White RJ . (2001). Mol. Cell. Biol., 21, 5806–5814.

  • Connell-Crowley L, Elledge SJ and Harper JW . (1998). Curr. Biol., 8, 65–68.

  • DeLisle AJ, Graves RA, Marzluff WF and Johnson LF . (1983). Mol. Cell. Biol., 3, 1920–1929.

  • Dufourny B, van Teeffelen HA, Hamelers IH, Sussenbach JS and Steenbergh PH . (2000). J. Endocrinol., 166, 329–338.

  • Gille H and Downward J . (1999). J. Biol. Chem., 274, 22033–22040.

  • Gouble A, Grazide S, Meggetto F, Mrcier P, Delsol G and Morello D . (2002). Cancer Res., 62, 1489–1495.

  • Guo Y, Stacey DW and Hitomi M . (2002). Oncogene, 21, 7545–7556.

  • Guttridge DC, Albanese C, Reuther JY, Pestell RG and Baldwin Jr AS . (1999). Mol. Cell. Biol., 19, 5785–5799.

  • Hashemolhosseini S, Nagamine Y, Morley SJ, Desrivieres S, Mercep L and Ferrari S . (1998). J. Biol. Chem., 273, 14424–14429.

  • Hitomi M and Stacey DW . (1999a). Mol. Cell. Biol., 19, 4623–4632.

  • Hitomi M and Stacey DW . (1999b). Curr. Biol., 9, 1075–1084.

  • Hitomi M and Stacey DW . (2001). FEBS Lett., 490, 123–131.

  • Ishida S, Huang E, Zuzan H, Spang R, Leone G, West M and Nevins JR . (2001). Mol. Cell. Biol., 21, 4684–4699.

  • Joyce D, Bouzahzah B, Fu M, Albanese C, D'Amico M, Steer J, Klein JU, Lee RJ, Segall JE, Westwick JK, Der CJ and Pestell RG . (1999). J. Biol. Chem., 274, 25245–25249.

  • Lavoie JN, L'Allemain G, Brunet A, Muller R and Pouyssegur J . (1996). J. Biol. Chem., 271, 20608–20616.

  • Lebwohl DE, Muise HR, Sepp LL, Serve S, Timaul M, Bol R, Borgen P and Rosen N . (1994). Oncogene, 9, 1925–1929.

  • Lee RJ, Albanese C, Fu M, D'Amico M, Lin B, Watanabe G, Haines III GK, Siegel PM, Hung MC, Yarden Y, Horowitz JM, Muller WJ and Pestell RG . (2000). Mol. Cell. Biol., 20, 672–683.

  • Lee RJ, Albanese C, Stenger RJ, Watanabe G, Inghirami G, Haines Gr, Webster M, Muller WJ, Brugge JS, Davis RJ and Pestell RG . (1999). J. Biol. Chem., 274, 7341–7350.

  • Lin S, Wang W, Wilson GM, Yang X, Brewer G, Holbrook NJ and Gorospe M . (2000). Mol. Cell. Biol., 20, 7903–7913.

  • Liu J-J, Chao J-R, Jiang M-C, Ng S-Y, Yen J-J and Yang-Yen H-F . (1995). Mol. Cell. Biol., 15, 3654–3663.

  • Lukas J, Bartkova J, Rohde M, Strauss M and Bartek J . (1995). Mol. Cell. Biol., 15, 2600–2611.

  • Matsumura I, Kitamura T, Wakao H, Tanaka H, Hashimoto K, Albanese C, Downward J, Pestell RG and Kanakura Y . (1999). EMBO J., 18, 1367–1377.

  • Matsushime H, Roussel MF, Ashmun RA and Sherr CJ . (1991). Cell, 65, 701–713.

  • Miyakawa Y and Matsushime H . (2001). Biochem. Biophys. Res. Commun., 284, 71–76.

  • Musa NL, Ramakrishnan M, Li J, Kartha S, Liu P, Pestell RG and Hershenson MB . (1999). Am. J. Resp. Cell Mol. Biol., 20, 352–358.

  • Ohtsubo M, Theodoras AM, Schumacher J, Roberts JM and Pagano M . (1995). Mol. Cell. Biol., 15, 2612–2624.

  • Pagano M, Theodoras AM, Tam SW and Draetta GF . (1994). Genes Dev., 8, 1627–1639.

  • Page K, Li J, Hodge JA, Liu PT, Vanden Hoek TL, Becker LB, Pestell RG, Rosner MR and Hershenson MB . (1999). J. Biol. Chem., 274, 22065–22071.

  • Pardee AB . (1974). Proc. Natl. Acad. Sci. USA, 71, 1286–1290.

  • Planas SM and Weinberg RA . (1997). Curr. Opin. Cell Biol., 9, 768–772.

  • Rickles R, Marashi F, Sierra F, Clark S, Wells J, Stein J and Stein G . (1982). Proc. Natl. Acad. Sci. USA, 79, 749–753.

  • Rimokh R, Berger F, Bastard C, Klein B, French M, Archimbaud E, Rouault JP, Lucia BS, Duret L, Vuillaume M, Coiffier B, Bryon P-A and Magaud JP . (1994). Blood, 83, 3689–3696.

  • Rosenwald IB, Kaspar R, Rousseau D, Gehrke L, Leboulch P, Chen JJ, Schmidt EV, Sonenberg N and London IM . (1995). J. Biol. Chem., 270, 21176–21180.

  • Sa G, Hitomi M, Harwalker J, Stacey A, Chen G and Stacey DW . (2002). Cell Cycle, 1, 50–58.

  • Sherr CJ . (1995). Proc. Assoc. Am. Physicians, 107, 181–186.

  • Sherr CJ . (1996). Science, 274, 1672–1677.

  • Sherr CJ, Matsushime H and Roussel MF . (1992). Ciba Found. Symp., 170, 209–219.

  • Sherr CJ and Roberts JM . (1995). Genes Dev., 9, 1149–1163.

  • Shie JL, Chen ZY, Fu M, Pestell RG and Tseng CC . (2000). Nucleic Acids Res., 28, 2969–2976.

  • Shtutman M, Zhurinsky J, Simcha I, Albanese C, D'Amico M, Pestell R and Ben-Ze'ev A . (1999). Proc. Natl. Acad. Sci. USA, 96, 5522–5527.

  • Stacey DW . (1981). Methods Enzymol., 79, 76–88.

  • Stacey DW . (2003). Curr. Opin. Cell Biol., 15, 158–163.

  • Topisirovic I, Guzman ML, McConnell MJ, Licht JD, Culjkovic B, Neering SJ, Jordan CT and Borden KLB . (2003). Mol. Cell. Biol., 23, 8992–9002.

  • Wang C, Fu M, D'Amico M, Albanese C, Zhou JN, Brownlee M, Lisanti MP, Chatterjee VK, Lazar MA and Pestell RG . (2001). Mol. Cell. Biol., 21, 3057–3070.

  • Watanabe G, Albanese C, Lee RJ, Reutens A, Vairo G, Henglein B and Pestell RG . (1998). Mol. Cell. Biol., 18, 3212–3222.

  • Westwick JK, Lambert QT, Clark GJ, Symons M, Van Aelst L, Pestell RG and Der CJ . (1997). Mol. Cell. Biol., 17, 1324–1335.

  • Westwick JK, Lee RJ, Lambert QT, Symons M, Pestell RG, Der CJ and Whitehead IP . (1998). J. Biol. Chem., 273, 16739–16747.

  • Winston JT, Coats SR, Wang YZ and Pledger WJ . (1996). Oncogene, 12, 127–134.

Download references

Acknowledgements

This work has been supported by NIH Grants: GM52271 and CA92194. We would like to thank Ke Yang for his helpful discussion, and Jeffery Nye and Jonathan Fretthold for their technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiro Hitomi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, Y., Harwalkar, J., Stacey, D. et al. Destabilization of cyclin D1 message plays a critical role in cell cycle exit upon mitogen withdrawal. Oncogene 24, 1032–1042 (2005). https://doi.org/10.1038/sj.onc.1208299

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1208299

Keywords

This article is cited by

Search

Quick links