Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

C3G-mediated suppression of oncogene-induced focus formation in fibroblasts involves inhibition of ERK activation, cyclin A expression and alterations of anchorage-independent growth

Abstract

We showed previously that exogenous overexpression of C3G, a guanine nucleotide releasing factor (GEF) for Rap1 and R-Ras proteins, blocks the focus-forming activity of cotransfected, activated, sis, ras and v-raf oncogenes in NIH 3T3 cells. In this report, we show that C3G also interferes with dbl and R-Ras focus-forming activity and demonstrate that the transformation suppressor ability of C3G maps to its Crk-binding region (SH3-b domain). Using full-length C3G and C3GΔCat mutant, lacking catalytic domain, we showed here that overexpression of cotransfected C3G or C3GΔCat inhibited oncogenic Hraslys12-mediated phosphorylation of ERK, without altering Ras and Raf-1 kinase activation. We also showed that, overexpressed C3G and C3GΔCat inhibited the viability of oncogenic Ras-induced colonies in soft agar, indicating that C3G interferes with the anchorage-independent growth of Ras-transformed cells in a Rap1-independent manner. Consistent with both observations, overexpression of exogenous C3G and C3GΔCat also caused downregulation of Ras-induced cyclin A expression. Altogether, our results indicate that C3G interferes with at least two separate aspects of oncogenic transformation – cell cycle progression and loss of contact inhibition – and that these inhibitory effects probably account for its transformation suppressor activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Abassi YA and Vuori K . (2002). EMBO J., 21, 4571–4582.

  • Arai A, Nosaka Y, Kanda E, Yamamoto K, Miyasaka N and Miura O . (2001). J. Biol. Chem., 276, 10453–10462.

  • Arai A, Nosaka Y, Kohsaka H, Miyasaka N and Miura O . (1999). Blood, 93, 3713–3722.

  • Benito M, Porras A, Mebreda MA and Santos E . (1991). Science, 253, 565–568.

  • Chen L and Okayama H . (1987). Mol. Cell. Biol., 7, 2745–2752.

  • de Jong R, van Wijk A, Heisterkamp N and Groffen J . (1998). Oncogene, 17, 2805–2810.

  • Dhillon AS, Pollock C, Steen H, Shaw PE, Mischak H and Kolch W . (2002). Mol. Cell. Biol., 22, 3237–3246.

  • DiFiore PP, Pierce JH, Kraus MH, Segatto O, King CR and Aaronson SA . (1987). Science, 237, 178–183.

  • Eva A and Aaronson SA . (1985). Nature, 316, 273–275.

  • Gotoh T, Hattori S, Nakamura S, Kitayama H, Noda M, Takai Y, Kaibuchi K, Matsui H, Hatase O, Takahashi H, Kurata T and Matsuda M . (1995). Mol. Cell. Biol., 15, 6746–6753.

  • Gotoh T, Niino Y, Tokuda M, Hatase O, Nakamura S, Matsuda M and Hattori S . (1997). J. Biol. Chem., 272, 18602–18607.

  • Guadagno TM, Ohtsubo M, Roberts JM and Assoian RK . (1993). Science, 262, 1572–1575.

  • Guerrero C, Fernández-Medarde A, Rojas JM, Font de Mora J, Esteban LM and Santos E . (1998). Oncogene, 16, 613–624.

  • Guerrero C, Pesce L, Lecuona E, Ridge KM and Sznajder JI . (2002). Am. J. Physiol., 282, L1099–L1107.

  • Hamad NM, Elconin JH, Karnoub AE, Bai W, Rich JN, Abraham RT, Der CJ and Counter CM . (2002). Genes Dev., 16, 2045–2057.

  • Howe A, Aplin AE, Alahari SK and Juliano RL . (1998). Curr. Opin. Cell Biol., 10, 220–231.

  • Ishimaru S, Williams R, Clark E, Hanafusa H and Gaul U . (1999). EMBO J., 18, 145–155.

  • Kang JS and Krauss RS . (1996). Mol. Cell. Biol., 16, 3370–3380.

  • Knudsen BS, Feller SM and Hanafusa H . (1994). J. Biol. Chem., 269, 32781–32787.

  • Lacal JC and Aaronson SA . (1986). Proc. Natl. Acad. Sci. USA, 83, 5400–5404.

  • Li L, Okura M and Imamoto A . (2002). Mol. Cell. Biol., 22, 1203–1217.

  • Marais R, Light Y, Paterson HF and Marshall CJ . (1995). EMBO J., 14, 3136–3145.

  • Matter ML and Laurie GW . (1994). J. Cell. Biol., 124, 1083–1090.

  • McLeod SJ, Ingham RJ, Bos JL, Kurosaki T and Gold MR . (1998). J. Biol. Chem., 273, 29218–29223.

  • Miki T, Matsui T, Heidaran MA and Aaronson SA . (1989). Gene, 83, 137–146.

  • Mochizuki N, Ohba Y, Kobayashi S, Otsuka N, Graybiel AM, Tanaka S and Matsuda M . (2000). J. Biol. Chem., 275, 12667–12671.

  • Ohba Y, Ikuta K, Ogura A, Matsuda J, Mochizuki N, Nagashima K, Kurokawa K, Mayer BJ, Maki K, Miyazaki J and Matusda M . (2001). EMBO J., 20, 3333–3341.

  • Ohba Y, Mochizuki N, Yamashita S, Chan AM, Schrader JW, Hattori S, Nagashima K and Matsuda M . (2000). J. Biol. Chem., 275, 20020–20026.

  • Paasinen-Sohns A and Holtta E . (1997). Oncogene, 15, 1953–1966.

  • Peeper DS, Upton TM, Ladha MH, Neuman E, Zalvide J, Bernards R, DeCaprio JA and Ewen ME . (1997). Nature, 386, 177–181.

  • Quilliam LA, Rebhun JF and Castro AF . (2002). Prog. Nucleic Acid Res. Mol. Biol., 71, 391–444.

  • Reedquist KA and Bos JL . (1998). J. Biol. Chem., 273, 4944–4949.

  • Renshaw MW, Ren XD and Schwartz MA . (1997). EMBO J., 16, 5592–5599.

  • Rodriguez-Viciana P, Warne PH, Khwaja A, Marte BM, Pappin D, Das P, Waterfield MD, Ridley A and Downward J . (1997). Cell, 89, 457–467.

  • Saez R, Chan AM-L, Miki T and Aaronson SA . (1994). Oncogene, 9, 2977–2982.

  • Sakkab D, Lewitzky M, Posern G, Schaeper U, Sachs M, Birchmeier W and Feller SM . (2000). J. Biol. Chem., 275, 10772–10778.

  • Sakoda T, Kaibuchi K, Kishi K, Kishida S, Doi K, Hoshino M, Hattori S and Takai Y . (1992). Oncogene, 7, 1705–1711.

  • Schulze A, Zerfass-Thome K, Berges J, Middendorp S, Jansen-Durr P and Henglein B . (1996). Mol. Cell. Biol., 16, 4632–4638.

  • Sozeri O, Vollmer K, Liyanage M, Frith D, Kour G, Mark GE and Stabel S . (1992). Oncogene, 7, 2259–2262.

  • Takuwa N and Takuwa Y . (2001). Mol. Cell. Endocrinol., 177, 25–33.

  • Tanaka S, Morishita T, Hashimoto Y, Hattori S, Nakamura S, Shibuya M, Matuoka K, Takenawa T, Kurata T and Nagashima K . (1994). Proc. Natl. Acad. Sci. USA, 91, 3443–3447.

  • Uemura N and Griffin JD . (1999). J. Biol. Chem., 274, 37525–37532.

  • Voss AK, Gruss P and Thomas T . (2003). Development, 130, 355–367.

  • Yam CH, Fung TK and Poon RY . (2002). Cell. Mol. Life Sci., 59, 1317–1326.

  • Yang J-J, Kang J-S and Krauss RS . (1998). Mol. Cell. Biol., 18, 2586–2595.

  • Yokote K, Hellman U, Ekman S, Saito Y, Rönnstrand L, Saito Y, Heldin C-H and Mori S . (1998). Oncogene, 16, 1229–1239.

  • York DR, Yao H, Dillon T, Ellig CL, Eckert SP, McCleskey EW and Stork PJS . (1998). Nature, 392, 622–626.

  • Zhu T, Goh ELK, LeRoith D and Lobie PE . (1998). J. Biol. Chem., 273, 33864–33875.

Download references

Acknowledgements

This work was supported by grants SAF00-0069 from MCYT and PI021570 from FIS, Spain. CG was supported by the Ramón y Cajal Program from MCYT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugenio Santos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guerrero, C., Martín-Encabo, S., Fernández-Medarde, A. et al. C3G-mediated suppression of oncogene-induced focus formation in fibroblasts involves inhibition of ERK activation, cyclin A expression and alterations of anchorage-independent growth. Oncogene 23, 4885–4893 (2004). https://doi.org/10.1038/sj.onc.1207622

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1207622

Keywords

This article is cited by

Search

Quick links