Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Apoptosis signaling triggered by the marine alkaloid ascididemin is routed via caspase-2 and JNK to mitochondria

Abstract

The marine alkaloid ascididemin (ASC) was shown to exert cytotoxicity even against multidrug-resistant cancer cells. Here, we address the signaling pathways utilized by ASC to trigger apoptosis in Jurkat leukemia T cells. We show that ASC (0.5–20 μ M) induces a mitochondrial pathway that requires the activation of the initiator caspase-2 upstream of mitochondria. ASC-triggered apoptosis occurred independent of CD95, but required mitochondrial dysfunction. The activation of caspase-2 was shown to precede the processing of caspase-8, -9 and -3. The specific caspase-2 inhibitor zVDVADfmk abrogated ASC-induced DNA fragmentation almost completely. Overexpression of Bcl-xL blocked caspase-8 but not caspase-2 processing. Conversely, caspase-2 inhibition strongly reduced caspase-9 activation. As a possible link between caspase-2 and mitochondrial dysfunction, Bid was found to be cleaved by ASC. In addition, JNK was activated by ASC upstream of mitochondria via reactive oxygen species. The specific JNK inhibitor SP600125 partially inhibited caspase-2 and -9 processing as well as cytochrome c release and DNA fragmentation indicating that JNK contributes to, but is not necessary for ASC-mediated apoptosis. Thus, ASC triggers a pathway in which early activation of caspase-2 provides a possible link between its DNA-damaging activity and the induction of mitochondrial dysfunction. The activation of JNK contributes to this signaling upstream of mitochondria.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Antlsperger DSM, Dirsch VM, Ferreira D, Su J-L, Kuo M-L and Vollmar AM . (2003). Oncogene, 22, 582–589.

  • Barr RK and Bogoyevitch MA . (2001). Int. J. Biochem. Cell Biol., 33, 1047–1063.

  • Beck WT, Mo YY and Bhat UG . (2001). Biochem. Soc. Trans., 29, 702–703.

  • Bennett BL, Sasaki DT, Murray BW, O'Leary EC, Sakata ST, Xu W, Leisten JC, Motiwala A, Pierce S, Satoh Y, Bhagwat SS, Manning AM and Anderson DW . (2001). Proc. Natl. Acad. Sci. USA, 98, 13681–13686.

  • Bonnard I, Bontemps N, Lahmy S, Banaigs B, Combaut G, Francisco C, Colson P, Houssier C, Waring MJ and Bailly C . (1995). Anticancer Drug Des., 10, 333–346.

  • Bracher F . (1993). J. Heterocyclic Chem., 30, 157–159.

  • Bratton SB and Cohen GM . (2001). Trends Pharmacol. Sci., 22, 306–315.

  • Cai J and Jones DP . (1998). J. Biol. Chem., 273, 11401–11404.

  • Dassonneville L, Wattez N, Baldeyrou B, Mahieu C, Lansiaux A, Banaigs B, Bonnard I and Bailly C . (2000). Biochem. Pharmacol., 60, 527–537.

  • Dirsch VM, Gerbes AL and Vollmar AM . (1998). Mol. Pharmacol., 53, 402–407.

  • Dirsch VM, Stuppner H and Vollmar AM . (2001). Cancer Res., 61, 5817–5823.

  • Droin N, Bichat F, Rebe C, Wotawa A, Sordet O, Hammann A, Bertrand R and Solary E . (2001). Blood, 97, 1835–1844.

  • Duan H and Dixit VM . (2002). Nature, 385, 86–89.

  • Ferri KF and Kroemer G . (2001). Nat. Cell Biol., 3, E255–E263.

  • Guo Y, Srinivasula SM, Druilhe A, Fernandes-Alnemri T and Alnemri ES . (2002). J. Biol. Chem., 277, 13430–13437.

  • Harvey NL, Butt AJ and Kumar S . (1997). J. Biol. Chem., 272, 13134–13139.

  • Harvey NL, Trapani JA, Fernandes-Alnemri T, Litwack G, Alnemri ES and Kumar S . (1996). Genes Cells, 1, 673–685.

  • Herr I and Debatin KM . (2001). Blood, 98, 2603–2614.

  • Kaufmann SH and Earnshaw WC . (2000). Exp. Cell Res., 256, 42–49.

  • Kharbanda S, Saxena S, Yoshida K, Pandey P, Kaneki M, Wang Q, Cheng K, Chen YN, Campbell A, Sudha T, Yuan ZM, Narula J, Weichselbaum R, Nalin C and Kufe D . (2000). J. Biol. Chem., 275, 322–327.

  • Kobayashi J, Cheng J, Nakamura Y, Ohizumi Y, Hirata Y, Sasaki T, Otha T and Nozoe S . (1988). Tetrahedron Lett., 29, 1177–1180.

  • Lassus P, Opitz-Araya X and Lazebnik Y . (2002). Science, 297, 1352–1354.

  • Leist M, Volbracht C, Fava E and Nicotera P . (1998). Mol. Pharmacol., 54, 789–801.

  • Lindsay BS, Barrows LR and Copp BR . (1995). Bioorg. Med. Chem. Lett., 5, 739–742.

  • Luo X, Budihardjo I, Zou H, Slaughter C and Wang X . (1998). Cell, 94, 481–490.

  • Matsumoto SS, Biggs J, Copp BR, Holden JA and Barrows LR . (2003). Chem. Res. Toxicol., 16, 113–122.

  • Mendelsohn AR, Hamer JD, Wang ZB and Brent R . (2002). Proc. Natl. Acad. Sci. USA, 99, 6871–6876.

  • Nicoletti I, Migliorati G, Pagliacci MC, Grignani F and Riccardi C . (1991). J. Immunol. Methods, 139, 271–279.

  • O'Reilly LA, Ekert P, Harvey N, Marsden V, Cullen L, Vaux DL, Hacker G, Magnusson C, Pakusch M, Cecconi F, Kuida K, Strasser A, Huang DC and Kumar S . (2002). Cell Death Differ., 9, 832–841.

  • Paroni G, Henderson C, Schneider C and Brancolini C . (2002). J. Biol. Chem., 277, 15147–15161.

  • Read SH, Baliga BC, Ekert PG, Vaux DL and Kumar S . (2002). J. Cell. Biol., 159, 739–745.

  • Robertson JD, Enoksson M, Suomela M, Zhivotovsky B and Orrenius S . (2002). J. Biol. Chem., 277, 29803–29809.

  • Robertson JD, Gogvadze V, Zhivotovsky B and Orrenius S . (2000). J. Biol. Chem., 275, 32438–32443.

  • Shearwin-Whyatt LM, Harvey NL and Kumar S . (2000). Cell Death Differ., 7, 155–165.

  • Slee EA, Harte MT, Kluck RM, Wolf BB, Casiano CA, Newmeyer DD, Wang HG, Reed JC, Nicholson DW, Alnemri ES, Green DR and Martin SJ . (1999). J. Cell. Biol., 144, 281–292.

  • Stefanis L, Troy CM, Qi H, Shelanski ML and Greene LA . (1998). J. Neurosci., 18, 9204–9215.

  • Walczak H, Bouchon A, Stahl H and Krammer PH . (2000). Cancer Res., 60, 3051–3057.

  • Yamamoto K, Ichijo H and Korsmeyer SJ . (1999). Mol. Cell. Biol., 19, 8469–8478.

Download references

Acknowledgements

We thank Drs Peter H Krammer and Henning Walczak (German Cancer Research Center, Heidelberg, Germany) as well as Dr Schulze-Osthoff (University of Münster, Germany) for supplying Jurkat T cell clones, and Dr X Wang (University of Texas, Dallas, USA) for providing the anti-Bid antibody. We gratefully acknowledge the excellent lab work of Katharina von Gersdorff.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Verena M Dirsch.

Additional information

This work was supported by the Deutsche Forschungsgemeinschaft (SFB 369)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dirsch, V., Kirschke, S., Estermeier, M. et al. Apoptosis signaling triggered by the marine alkaloid ascididemin is routed via caspase-2 and JNK to mitochondria. Oncogene 23, 1586–1593 (2004). https://doi.org/10.1038/sj.onc.1207281

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1207281

Keywords

This article is cited by

Search

Quick links