Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Negative regulation of SCFSkp2 ubiquitin ligase by TGF-β signaling

Abstract

TGF-β is a multifunctional growth factor whose best-known function is to inhibit cell growth and suppress tumor formation. TGF-β causes cells to accumulate in mid-to-late G1 phase by blocking the transition from G1 to S. It has been shown that TGF-β inhibits Cdk2-cyclin E kinase activity by promoting the binding of cell cycle inhibitor p27Kip1 to the kinase complexes. Here, we show that TGF-β treatment leads to stabilization of p27Kip1 during G1 to S transition. We found that TGF-β negatively regulates components of the SCF complex, which degrades the p27Kip1 during the G1 to S transition, through two distinct mechanisms. Using a pulse-chase analysis, we demonstrated that the stability of Skp2 decreases in the presence of TGF-β. Destabilization of Skp2 by ubiquitin-mediated proteolysis was also demonstrated that in an in vitro degradation system, using cell extracts prepared from TGF-β-treated cultured cells. In addition, TGF-β treatment decreases the levels of Cks1 mRNA. The deficiency of Cks1 in TGF-β-treated cells likely contributes to the stabilization of p27Kip1 and destabilization of Skp2, because in the absence of Cks1, SCFSkp2 cannot ubiquitinate p27Kip1; instead, self-ubiquitination of Skp2 occurs. Thus, stabilization of the cell cycle inhibitor p27Kip1 and cell growth inhibition in response to TGF-β occur in part through limiting the threshold of the SCFSkp2 ubiquitin ligase by transcriptional and post-transcriptional mechanisms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  • Attisano L and Wrana JL . (2002). Science, 296, 1646–1647.

  • Blain SW and Massague J . (2002). Nat. Med., 8, 1076–1078.

  • Bonni S, Wang HR, Causing CG, Kavsak P, Stroschein SL, Luo K and Wrana JL . (2001). Nat. Cell. Biol., 3, 587–595.

  • Carrano AC, Eytan E, Hershko A and Pagano M . (1999). Nat. Cell. Biol., 1, 193–199.

  • Datto MB, Li Y, Panus JF, Howe DJ, Xiong Y and Wang X-F . (1995). Proc. Natl. Acad. Sci. USA, 92, 5545–5549.

  • Deshaies RJ . (1999). Annu. Rev. Cell. Dev. Biol., 15, 435–467.

  • Donnellan R and Chetty R . (1999). FASEB J., 13, 773–780.

  • Dow R, Hendley J, Pirkmaier A, Musgrove EA and Germain D . (2001). J. Biol. Chem., 276, 45945–45951.

  • Galaktionov K, Chen X and Beach D . (1996). Nature, 382, 511–517.

  • Galan JM and Peter M . (1999). Proc. Natl. Acad. Sci. USA, 96, 9124–9129.

  • Ganoth D, Bornstein G, Ko TK, Larsen B, Tyers M, Pagano M and Hershko A . (2001). Nat. Cell. Biol., 3, 321–324.

  • Gstaiger M, Jordan R, Lim M, Catzavelos C, Mestan J, Slingerland J and Krek W . (2001). Proc. Natl. Acad. Sci. USA, 98, 5043–5048.

  • Hanahan D and Weinberg RA . (2000). Cell, 100, 57–70.

  • Hannon GJ and Beach D . (1994). Nature, 371, 257–261.

  • Harper JW . (2001). Curr. Biol., 11, R431–R435.

  • Iavarone A and Massague J . (1997). Nature, 387, 417–422.

  • Kavsak P, Rasmussen RK, Causing CG, Bonni S, Zhu H, Thomsen GH and Wrana JL . (2000). Mol. Cell, 6, 1365–1375.

  • Koepp D, Schaefer LK, Ye X, Keyomarsi K, Chu C, Harper JW and Elledge SJ . (2001). Science, 294, 173–177.

  • Koff A, Ohtsuki M, Polyak K, Roberts JM and Massague J . (1993). Science, 260, 536–539.

  • Laiho M, DeCaprio JA, Ludlow JW, Livingston DM and Massague J . (1990). Cell, 62, 175–185.

  • Latres E, Chiarle R, Schulman BA, Pavletich NP, Pellicer A, Inghirami G and Pagano M . (2001). Proc. Natl. Acad. Sci. USA, 98, 2515–2520.

  • Liang J, Zubovitz J, Petrocelli T, Kotchetkov R, Connor MK, Han K, Lee JH, Ciarallo S, Catzavelos C, Beniston R, Franssen E and Slingerland JM . (2002). Nat. Med., 8, 1153–1160.

  • Lisztwan J, Marti A, Sutterluty H, Gstaiger M, Wirbelauer C and Krek W . (1998). EMBO J., 17, 368–383.

  • Liu X, Constantinescu SN, Sun Y, Bogan JS, Hirsch D, Weinberg RA and Lodish HF . (2000a). Anal. Biochem., 280, 20–28.

  • Liu X, Elia AE, Law SF, Golemis EA, Farley J and Wang T . (2000b). EMBO J., 19, 6759–6769.

  • Liu X, Sun Y, Constantinescu SN, Karam E, Weinberg RA and Lodish HF . (1997). Proc. Natl. Acad. Sci. USA, 94, 10669–10674.

  • Liu X, Sun Y, Ehrlich M, Lu T, Kloog Y, Weinberg RA, Lodish HF and Henis YI . (2000c). Oncogene, 19, 5926–5935.

  • Liu X, Sun Y, Weinberg RA and Lodish HF . (2001). Cytokine Growth Factor Rev., 12, 1–8.

  • Lyapina SA, Correll CC, Kipreos ET and Deshaies RJ . (1998). Proc. Natl. Acad. Sci. USA, 95, 7451–7456.

  • Massague J, Blain SW and Lo RS . (2000). Cell, 103, 295–309.

  • Michel JJ and Xiong Y . (1998). Cell Growth Differ., 9, 435–449.

  • Montagnoli A, Fiore F, Eytan E, Carrano AC, Draetta GF, Hershko A and Pagano M . (1999). Genes Dev., 13, 1181–1189.

  • Murray AW . (1991). Methods Cell Biol., 36, 581–606.

  • Nakayama KI, Hatakeyama S and Nakayama K . (2001). Biochem. Biophys. Res. Commun., 282, 853–860.

  • Pagano M, Tam SW, Theodoras AM, Beer-Romero P, Del Sal G, Chau V, Yew PR, Draetta GF and Rolfe M . (1995). Science, 269, 682–685.

  • Pietenpol JA, Holt JT, Stein RW and Moses HL . (1990). Proc. Natl. Acad. Sci. USA, 87, 3758–3762.

  • Reynisdottir I and Massague J . (1997). Genes Dev., 11, 492–503.

  • Reynisdottir I, Polyak K, Iavarone A and Massague J . (1995). Genes Dev., 9, 1831–1845.

  • Sherr CJ and Roberts JM . (1999). Genes Dev., 13, 1501–1512.

  • Shin I, Yakes FM, Rojo F, Shin NY, Bakin AV, Baselga J and Arteaga CL . (2002). Nat. Med., 8, 1145–1152.

  • Simon KE, Cha HH and Firestone GL . (1995). Cell Growth Differ., 6, 1261–1269.

  • Sitry D, Seeliger MA, Ko TK, Ganoth D, Breward SE, Itzhaki LS, Pagano M and Hershko A . (2002). J. Biol. Chem., 277, 42233–42240.

  • Slingerland J and Pagano M . (2000). J. Cell Physiol., 183, 10–17.

  • Spruck C, Strohmaier H, Watson M, Smith AP, Ryan A, Krek TW and Reed SI . (2001). Mol. Cell, 7, 639–650.

  • Strohmaier H, Spruck C, Kaiser P, Won K, Sangfelt O and Reed SI . (2001). Nature, 413, 316–322.

  • Stroschein SL, Bonni S, Wrana JL and Luo K . (2001). Genes Dev., 15, 2822–2836.

  • Stroschein SL, Wang W, Zhou S, Zhou Q and Luo K . (1999). Science, 286, 771–774.

  • Sun Y, Liu X, Ng-Eaton E, Lodish HF and Weinberg RA . (1999). Proc. Natl. Acad. Sci. USA, 96, 12442–12447.

  • Sutterluty H, Chatelain E, Marti A, Wirbelauer C, Senften M, Muller U and Krek W . (1999). Nat. Cell Biol., 1, 207–214.

  • Tedesco D, Lukas J and Reed SI . (2002). Genes Dev., 16, 2946–2957.

  • Tsubari M, Taipale J, Tiihonen E, Keski-Oja J and Laiho M . (1999). Mol. Cell Biol., 19, 3654–3663.

  • Tsvetkov LM, Yeh KH, Lee SJ, Sun H and Zhang H . (1999). Curr. Biol., 9, 661–664.

  • Viglietto G, Motti ML, Bruni P, Melillo RM, D’Alessio A, Califano D, Vinci F, Chiappetta G, Tsichlis P, Bellacosa A, Fusco A and Santoro M . (2002). Nat. Med., 8, 1136–1144.

  • Wan Y, Liu X and Kirschner MW . (2001). Mol. Cell, 8, 1027–1039.

  • Wang W, Ungermannova D, Chen L and Liu X . (2003). J. Biol. Chem., 278, 32390–32396.

  • Winston JT, Strack P, Beer-Romero P, Chu CY, Elledge SJ and Harper JW . (1999). Genes Dev., 13, 270–283.

  • Wirbelauer C, Sutterluty H, Blondel M, Gstaiger M, Peter M, Reymond F and Krek W . (2000). EMBO J., 19, 5362–5375.

  • Zhang H, Kobayashi R, Galaktionov K and Beach D . (1995). Cell, 82, 915–925.

  • Zhou P and Howley PM . (1998). Mol. Cell, 2, 571–580.

Download references

Acknowledgements

We thank Drs Kirschner, Yong Wan, Pagano, Pengbo Zhou and Plon for the generous supply of the cDNA clones and reagents used in this study. We thank Natalie Ahn and Katheryn Resing and members of their laboratories for stimulating discussions and Tom Cheung, Richard Erickson and Matthew Knuesel for technical help. We also thank Natalie Ahn, James Goodrich and Kristen Bjorkman for critically reading the manuscripts. This work is supported by Grants CA95527-01 from the National Institutes of Health and Colorado Tobacco Research Program 2R-045 to Xuedong Liu.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuedong Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, W., Ungermannova, D., Jin, J. et al. Negative regulation of SCFSkp2 ubiquitin ligase by TGF-β signaling. Oncogene 23, 1064–1075 (2004). https://doi.org/10.1038/sj.onc.1207204

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1207204

Keywords

This article is cited by

Search

Quick links