Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Rad51 overexpression promotes alternative double-strand break repair pathways and genome instability

Abstract

Genomic instability is characteristic of tumor cells, and a strong correlation exists between abnormal karyotype and tumorigenicity. Increased expression of the homologous recombination and DNA repair protein Rad51 has been reported in immortalized and tumor cells, which could alter recombination pathways to contribute to the chromosomal rearrangements found in these cells. We used a genetic system to examine the potential for multiple double-strand breaks to lead to genome rearrangements in the presence of increased Rad51 expression. Analysis of repair revealed a novel class of products consistent with crossing over, involving gene conversion associated with an exchange of flanking markers leading to chromosomal translocations. Increased Rad51 also promoted aneuploidy and multiple chromosomal rearrangements. These data provide a link between elevated Rad51 protein levels, genome instability, and tumor progression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Abbreviations

DSB:

DNA double-strand break

ES:

embryonic stem

STGC:

short-tract gene conversion

LTGC:

long-tract gene conversion

NHEJ:

nonhomologous endjoining

chr.14:

chromosome 14

chr.17:

chromosome 17

FISH:

fluorescence in situ hybridization

References

  • Aguilera A and Klein HL . (1989). Genetics, 123, 683–694.

  • Aladjem MI, Spike BT, Rodewald LW, Hope TJ, Klemm M, Jaenisch R and Wahl GM . (1998). Curr. Biol., 8, 145–155.

  • Allers T and Lichten M . (2001). Cell, 106, 47–57.

  • Andreassen PR, Lohez OD, Lacroix FB and Margolis RL . (2001). Mol. Biol. Cell, 12, 1315–1328.

  • Antonarakis SE, Krawczak M and Cooper DN . (2002). The Genetic Basis of Human Cancer. Vogelstein B and Kinzler KW (eds) McGraw-Hill: New York, pp. 7–42.

    Google Scholar 

  • Arnaudeau C, Helleday T and Jenssen D . (1999). J. Mol. Biol., 289, 1231–1238.

  • Baumann P, Benson FE and West SC . (1996). Cell, 87, 757–766.

  • Belmaaza A and Chartrand P . (1994). Mutat. Res., 314, 199–208.

  • Borel F, Lohez OD, Lacroix FB and Margolis RL . (2002). Proc. Natl. Acad. Sci. USA, 99, 9819–9824.

  • Bosco G and Haber JE . (1998). Genetics, 150, 1037–1047.

  • Boxer LM and Dang CV . (2001). Oncogene, 20, 5595–5610.

  • Buchhop S, Gibson MK, Wang XW, Wagner P, Sturzbecher HW and Harris CC . (1997). Nucleic Acids Res., 25, 3868–3874.

  • Chen F, Nastasi A, Shen Z, Brenneman M, Crissman H and Chen DJ . (1997). Mutat. Res., 384, 205–211.

  • Corbet SW, Clarke AR, Gledhill S and Wyllie AH . (1999). Oncogene, 18, 1537–1544.

  • Cory S, Vaux DL, Strasser A, Harris AW and Adams JM . (1999). Cancer Res., 59, 1685s–1692s.

  • Flygare J, Falt S, Ottervald J, Castro J, Dackland AL, Hellgren D and Wennborg A . (2001). Exp. Cell Res., 268, 61–69.

  • Gibson L, Holmgreen SP, Huang DC, Bernard O, Copeland NG, Jenkins NA, Sutherland GR, Baker E, Adams JM and Cory S . (1996). Oncogene, 13, 665–675.

  • Gloor GB and Lankenau DH . (1998). Trends Genet., 14, 43–46.

  • Grandori C, Cowley SM, James LP and Eisenman RN . (2000). Annu. Rev. Cell Dev. Biol., 16, 653–699.

  • Haaf T, Golub EI, Reddy G, Radding CM and Ward DC . (1995). Proc. Natl. Acad. Sci. USA, 92, 2298–2302.

  • Huang Y, Nakada S, Ishiko T, Utsugisawa T, Datta R, Kharbanda S, Yoshida K, Talanian RV, Weichselbaum R, Kufe D and Yuan ZM . (1999). Mol. Cell. Biol., 19, 2986–2997.

  • Hut HM, Lemstra W, Blaauw EH, Van Cappellen GW, Kampinga HH and Sibon OC . (2003). Mol. Biol. Cell, 14, 1993–2004.

  • Jasin M and Berg P . (1988). Genes. Dev., 2, 1353–1363.

  • Johnson RD and Jasin M . (2000). EMBO J., 19, 3398–3407.

  • Karlsson A, Giuriato S, Tang F, Fung-Weier J, Levan G and Felsher DW . (2003). Blood, 101, 2797–2803.

  • Kim PM, Allen C, Wagener BM, Shen Z and Nickoloff JA . (2001). Nucleic Acids Res., 29, 4352–4360.

  • Kraakman-van der Zwet M, Overkamp WJ, van Lange RE, Essers J, van Duijn-Goedhart A, Wiggers I, Swaminathan S, van Buul PP, Errami A, Tan RT, Jaspers NG, Sharan SK, Kanaar R and Zdzienicka MZ . (2002). Mol. Cell. Biol., 22, 669–679.

  • Krejci L, Van Komen S, Li Y, Villemain J, Reddy MS, Klein H, Ellenberger T and Sung P . (2003). Nature, 423, 305–309.

  • Lambert S and Lopez BS . (2000). EMBO J., 19, 3090–3099.

  • Liang F, Han M, Romanienko PJ and Jasin M . (1998). Proc. Natl. Acad. Sci. USA, 95, 5172–5177.

  • Lim D-S and Hasty P . (1996). Mol. Cell. Biol., 16, 7133–7143.

  • Malkova A, Ivanov EL and Haber JE . (1996). Proc. Natl. Acad. Sci. USA, 93, 7131–7136.

  • Marmorstein LY, Ouchi T and Aaronson SA . (1998). Proc. Natl. Acad. Sci. USA, 95, 13869–13874.

  • Morgan SE and Kastan MB . (1997). Adv. Cancer Res., 71, 1–25.

  • Morrison C, Shinohara A, Sonoda E, Yamaguchi-Iwai Y, Takata M, Weichselbaum RR and Takeda S . (1999). Mol. Cell. Biol., 19, 6891–6897.

  • Nasmyth KA . (1982). Annu. Rev. Genet., 16, 439–500.

  • Pâques F and Haber JE . (1999). Microbiol. Mol. Biol. Rev., 63, 349–404.

  • Pedersen-Bjergaard J and Rowley JD . (1994). Blood, 83, 2780–2786.

  • Raderschall E, Bazarov A, Cao J, Lurz R, Smith A, Mann W, Ropers HH, Sedivy JM, Golub EI, Fritz E and Haaf T . (2002a). J. Cell Sci., 115, 153–164.

  • Raderschall E, Stout K, Freier S, Suckow V, Schweiger S and Haaf T . (2002b). Cancer Res., 62, 219–225.

  • Richardson C and Jasin M . (2000a). Mol. Cell. Biol., 20, 9068–9075.

  • Richardson C and Jasin M . (2000b). Nature, 405, 697–700.

  • Richardson C, Moynahan ME and Jasin M . (1998). Genes Dev., 12, 3831–3842.

  • Scully R, Chen J, Plug A, Xiao Y, Weaver D, Feunteun J, Ashley T and Livingson DM . (1997). Cell, 88, 265–275.

  • Slupianek A, Schmutte C, Tombline G, Nieborowska-Skorska M, Hoser G, Nowicki MO, Pierce AJ, Fishel R and Skorski T . (2001). Mol. Cell, 8, 795–806.

  • Sonoda E, Sasaki MS, Buerstedde JM, Bezzubova O, Shinohara A, Ogawa H, Takata M, Yamaguchi-Iwai Y and Takeda S . (1998). EMBO J., 17, 598–608.

  • Stark J and Jasin M . (2003). Mol. Cell. Biol., 23, 733–743.

  • Stark JM, Hu P, Pierce AJ, Moynahan ME, Ellis N and Jasin M . (2002). J. Biol. Chem., 277, 20185–20194.

  • Sturzbecher HW, Donzelmann B, Henning W, Knippschild U and Buchhop S . (1996). EMBO J., 15, 1992–2002.

  • Super HJ, McCabe NR, Thirman MJ, Larson RA, Le Beau MM, Pedersen-Bjergaard J, Philip P, Diaz MO and Rowley JD . (1993). Blood, 82, 3705–3711.

  • Szostak JW, Orr-Weaver TL, Rothstein RJ and Stahl FW . (1983). Cell, 33, 25–35.

  • Tremblay A, Jasin M and Chartrand P . (2000). Mol. Cell. Biol., 20, 54–60.

  • Tsuzuki T, Fujii Y, Sakumi K, Tominaga Y, Nakao K, Sekiguchi M, Matsushiro A, Yoshimura Y and Morita T . (1996). Proc. Natl. Acad. Sci. USA, 93, 6236–6240.

  • van Brabant AJ, Stan R and Ellis NA . (2000). Annu. Rev. Genomics Hum. Genet., 1, 409–459.

  • van Gent DC, Hoeijmakers JH and Kanaar R . (2001). Nat. Rev. Genet., 2, 196–206.

  • Vaux DL, Cory S and Adams JM . (1988). Nature, 335, 440–442.

  • Veaute X, Jeusset J, Soustelle C, Kowalczykowski SC, Le Cam E and Fabre F . (2003). Nature, 423, 309–312.

  • Venkitaraman AR . (2002). Cell, 108, 171–182.

  • Vispe S, Cazaux C, Lesca C and Defais M . (1998). Nucleic Acids Res., 26, 2859–2864.

  • Wu L, Davies SL, Levitt NC and Hickson ID . (2001). J. Biol. Chem., 276, 19375–19381.

  • Xia SJ, Shammas MA and Shmookler Reis RJ . (1997). Mol. Cell. Biol., 17, 7151–7158.

  • Yamamoto A, Taki T, Yagi H, Habu T, Yoshida K, Yoshimura Y, Yamamoto K, Matsushiro A, Nishimune Y and Morita T . (1996). Mol. Gen. Genet., 251, 1–12.

  • Yanez RJ and Porter AC . (1999). Gene Therapy, 6, 1282–1290.

Download references

Acknowledgements

We thank Ramon Parsons and Hein te Riele for materials, Jac Nickoloff for helpful comments, Murty Vundivalli for metaphase preparations and SKY analysis, Vladin Miljkovic for sequencing, and Teresa Swayne for assistance with FISH analysis (Columbia University microscopy facility established and supported by N.I.H. grants S10 RR10506, S10 RR13701, and P30 CA13696). This work was supported in part by a Leukemia and Lymphoma fellowship to CR. JS is supported by an American Cancer Society post-doctoral fellowship PF-00-106-01-MGO. This work was supported by a National Science Foundation grant MCB-9728333 to MJ.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine Richardson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Richardson, C., Stark, J., Ommundsen, M. et al. Rad51 overexpression promotes alternative double-strand break repair pathways and genome instability. Oncogene 23, 546–553 (2004). https://doi.org/10.1038/sj.onc.1207098

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1207098

Keywords

This article is cited by

Search

Quick links