Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

The p53 tumor suppressor gene is regulated in vivo by nuclear factor 1-C2 in the mouse mammary gland during pregnancy

Abstract

The p53 tumor suppressor protein plays an important role in preventing cancer development by arresting or killing potential tumor cells. Downregulated p53 levels, or mutations within the p53 gene, leading to the loss of p53 activity, are found in many breast carcinomas. Here we demonstrate that the p53 gene is transcriptionally upregulated in the normal mouse mammary gland at midpregnancy. We show that the specific isoform nuclear factor 1-C2 (NF1-C2) plays an important role in this activation. Functional mutation of the NF1-binding site in the mouse p53 promoter resulted in a reduction of the gene expression to less than 30% in mammary epithelial cells. By the use of two powerful techniques, chromatin immunoprecipitation and oligonucleotide decoy, we verify the importance of NF1-C2 in p53 gene activation in vivo. These findings demonstrate a broader role for NF1-C2 in the mammary gland at midpregnancy, beyond its earlier reported activation of milk protein genes. We also demonstrate that NF1-A1 proteins are produced in the mouse mammary gland. However, due to their lower affinity to the NF1-binding site, these proteins are not involved in the transcriptional upregulation of p53 at midpregnancy. This paper constitutes the first report demonstrating the importance of NF1 proteins in the p53 gene activation in the mouse mammary gland. It is also the first time that p53 gene activation is coupled to a specific, endogenously expressed NF1 isoform.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Almog N and Rotter V . (1997). Biochim. Biophys. Acta, 1333, F1–F27.

  • Andres AC, van der Valk MA, Schonenberger CA, Fluckiger F, LeMeur M, Gerlinger P and Groner B . (1988). Genes Dev., 2, 1486–1495.

  • Ausubel F, Brent R, Moore D, Smith J, Seidman J and Struhl K . (1987). Current Protocols in Molecular Biology, Wiley Interscience: New York, pp. 12.1.1–12.1.4.

    Google Scholar 

  • Balint E and Reisman D . (1996). Cancer Res., 56, 1648–1653.

  • Banerjee D, Lenz HJ, Schnieders B, Manno DJ, Ju JF, Spears CP, Hochhauser D, Danenberg K, Danenberg P and Bertino JR . (1995). Cell Growth Differ., 6, 1405–1413.

  • Bengtsson SH, Madeyski-Bengtson K, Nilsson J and Bjursell G . (2002). Biochem. J., 365, 481–488.

  • Bienz-Tadmor B, Zakut-Houri R, Libresco S, Givol D and Oren M . (1985). EMBO J., 4, 3209–3213.

  • Bradford MM . (1976). Anal. Biochem., 72, 248–254.

  • Chylicki K, Ehinger M, Svedberg H, Bergh G, Olsson I and Gullberg U . (2000). Cell Growth Differ., 11, 315–324.

  • Coles C, Condie A, Chetty U, Steel CM, Evans HJ and Prosser J . (1992). Cancer Res., 52, 5291–5298.

  • Ehinger M, Nilsson E, Persson AM, Olsson I and Gullberg U . (1995). Cell Growth Differ., 6, 9–17.

  • Feinstein E, Gale RP, Reed J and Canaani E . (1992). Oncogene, 7, 1853–1857.

  • Furlong EE, Rein T and Martin F . (1996). Mol. Cell Biol., 16, 5933–5945.

  • Goyal N, Knox J and Gronostajski RM . (1990). Mol. Cell Biol., 10, 1041–1048.

  • Gronostajski RM . (2000). Gene, 249, 31–45.

  • Hale TK, Myers C, Maitra R, Kolzau T, Nishizawa M and Braithwaite AW . (2000). J. Biol. Chem., 275, 17991–17999.

  • Hellin AC, Calmant P, Gielen J, Bours V and Merville MP . (1998). Oncogene, 16, 1187–1195.

  • Kane R, Finlay D, Lamb T and Martin F . (2000). Adv. Exp. Med. Biol., 480, 117–122.

  • Kannius-Janson M, Johansson EM, Bjursell G and Nilsson J . (2002). J. Biol. Chem., 277, 17589–17596.

  • Kannius-Janson M, Lidberg U, Hulten K, Gritli-Linde A, Bjursell G and Nilsson J . (1998). Biochem. J., 336, 577–585.

  • Kirch HC, Flaswinkel S, Rumpf H, Brockmann D and Esche H . (1999). Oncogene, 18, 2728–2738.

  • Kruse U and Sippel AE . (1994). FEBS Lett., 348, 46–50.

  • Kuperwasser C, Pinkas J, Hurlbut GD, Naber SP and Jerry DJ . (2000). Cancer Res., 60, 2723–2729.

  • Lang D, Miknyoczki SJ, Huang L and Ruggeri BA . (1998). Oncogene, 16, 1593–1602.

  • Lidberg U, Kannius-Janson M, Nilsson J and Bjursell G . (1998). J. Biol. Chem., 273, 31417–31426.

  • Lidberg U, Nilsson J, Stromberg K, Stenman G, Sahlin P, Enerback S and Bjursell G . (1992). Genomics, 13, 630–640.

  • Morishita R, Gibbons GH, Horiuchi M, Ellison KE, Nakama M, Zhang L, Kaneda Y, Ogihara T and Dzau VJ . (1995). Proc. Natl. Acad. Sci. USA, 92, 5855–5859.

  • Morishita R, Sugimoto T, Aoki M, Kida I, Tomita N, Moriguchi A, Maeda K, Sawa Y, Kaneda Y, Higaki J and Ogihara T . (1997). Nat. Med., 3, 894–899.

  • Mukhopadhyay SS, Wyszomierski SL, Gronostajski RM and Rosen JM . (2001). Mol. Cell Biol., 21, 6859–6869.

  • Nayak BK and Das BR . (1999). Mol. Biol. Rep., 26, 223–230.

  • Nebl G, Mermod N and Cato AC . (1994). J. Biol. Chem., 269, 7371–7378.

  • Oren M . (1999). J. Biol. Chem., 274, 36031–36034.

  • Osada S, Matsubara T, Daimon S, Terazu Y, Xu M, Nishihara T and Imagawa M . (1999). Biochem. J., 342, 189–198.

  • Rafty LA, Santiago FS and Khachigian LM . (2002). EMBO J., 21, 334–343.

  • Raman V, Martensen SA, Reisman D, Evron E, Odenwald WF, Jaffee E, Marks J and Sukumar S . (2000). Nature, 405, 974–978.

  • Saifudeen Z, Dipp S and El-Dahr SS . (2002). J. Clin. Invest., 109, 1021–1030.

  • Shaulsky G, Goldfinger N, Peled A and Rotter V . (1991). Cell Growth Differ., 2, 661–667.

  • Sivaraman L, Conneely OM, Medina D and O’Malley BW . (2001). Proc. Natl. Acad. Sci. USA, 98, 12379–12384.

  • Soddu S, Blandino G, Scardigli R, Coen S, Marchetti A, Rizzo MG, Bossi G, Cimino L, Crescenzi M and Sacchi A . (1996). J. Cell Biol., 134, 193–204.

  • Soini Y, Kamel D, Nuorva K, Lane DP, Vahakangas K and Paakko P . (1992). Virchows Arch. A – Pathol. Anat. Histopathol., 421, 415–420.

  • Strange R, Li F, Saurer S, Burkhardt A and Friis RR . (1992). Development, 115, 49–58.

  • Stromqvist M, Hernell O, Hansson L, Lindgren K, Skytt A, Lundberg L, Lidmer AS and Blackberg L . (1997). Arch. Biochem. Biophys., 347, 30–36.

  • Sun X, Shimizu H and Yamamoto K . (1995). Mol. Cell Biol., 15, 4489–4496.

  • Wiseman BS and Werb Z . (2002). Science, 296, 1046–1049.

  • Yang BS, Gilbert JD and Freytag SO . (1993). Mol. Cell Biol., 13, 3093–3102.

Download references

Acknowledgements

We are grateful to Kerstin Dahlenborg for technical assistance and Ola Brusehed for help with mammary gland preparations. We also thank Dr N Tanese, NYU Medical center, NY, for the NF1-C specific antibody and Dr RM Gronostajski, Lerner Institute, OH, for the pCHNF1 expression plasmids. This work was supported by grants from the Swedish Medical Reasearch Council, Assar Gabrielsson foundation, Fredrik and Ingrid Thuring foundation, and Magnus Bergvall foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva M Johansson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johansson, E., Kannius-Janson, M., Bjursell, G. et al. The p53 tumor suppressor gene is regulated in vivo by nuclear factor 1-C2 in the mouse mammary gland during pregnancy. Oncogene 22, 6061–6070 (2003). https://doi.org/10.1038/sj.onc.1206884

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1206884

Keywords

This article is cited by

Search

Quick links