Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Preferential induction of necrosis in human breast cancer cells by a p53 peptide derived from the MDM2 binding site

Abstract

p53 is the most frequently altered gene in human cancer and therefore represents an ideal target for cancer therapy. Several amino terminal p53-derived synthetic peptides were tested for their antiproliferative effects on breast cancer cell lines MDA-MB-468 (mutant p53), MCF-7 (overexpressed wild-type p53), and MDA-MB-157 (null p53). p53(15)Ant peptide representing the majority of the mouse double minute clone 2 binding site on p53 (amino acids 12–26) fused to the Drosophila carrier protein Antennapedia was the most effective. p53(15)Ant peptide induced rapid, nonapoptotic cell death resembling necrosis in all breast cancer cells; however, minimal cytotoxicity was observed in the nonmalignant breast epithelial cells MCF-10–2A and MCF-10F. Bioinformatic/biophysical analysis utilizing hydrophobic moment and secondary structure predictions as well as circular dichroism spectroscopy revealed an α-helical hydrophobic peptide structure with membrane disruptive potential. Based on these findings, p53(15)Ant peptide may be a novel peptide cancer therapeutic because it induces necrotic cell death and not apoptosis, which is uncommon in traditional cancer therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 3
Figure 4
Figure 5
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Abbreviations

CFU-GEMM:

Colony forming units for granulocytes, erythryocytes, monocytes, and macrophages

DMSO:

Dimethylsulfoxide

MTT:

3-[4,5-dimethylthiazol-2yl]-2,5-diphenyl tetrazolium bromide

PI:

Propidium iodide

CPP32:

32 kDa cysteine protease

LDH:

Lactate dehydrogenase

SDS–PAGE:

Sodium dodecyl sulfate–polyacrylamide gel electrophoresis

MDM2:

Mouse double min clone 2

PARP:

Poly (ADP-ribose) polymerase

TEM:

Transmission electron microscopy

PBS:

Phosphate-buffered saline

CD:

Circular dichroism spectroscopy

BAF:

BOC-Asp(OMe)-FMK caspase inhibitor

References

  • Berlose JP, Convert O, Derossi D, Brunissen A, and Chassaing G . (1996). Eur. J. Biochem., 242, 372–386.

  • Bottger A, Bottger V, Sparks A, Liu WL, Howard SF, and Lane DP . (1997). Curr. Biol., 7, 860–869.

  • Brugidou J, Legrand C, Mery J, and Rabie A . (1995). Biochem. Biophys. Res. Commun., 214, 685–693.

  • Couet J, Li S, Okamoto T, Ikezu T, and Lisanti MP . (1997). J. Biol. Chem., 272, 6525–6533.

  • De Kroon AIPM, De Gier J, and De Kruijff B . (1993). Lipid–Peptide Interactions in Model Systems-Membrane Insertion and Translocation of Peptides: Protein–Lipid Interactions. Elsevier: Amsterdam.

    Book  Google Scholar 

  • Delaconstantinos G . (1987). Anticancer Res., 7, 1011–1021.

  • Derossi D, Chassaing G, and Prochiantz A . (1998). Trends Cell Biol., 8, 84–87.

  • Derossi D, Calvet S, Trembleau A, Brunissen A, Chassaing G, and Prochiantz A . (1996). J. Biol. Chem., 271, 18188–18193.

  • Eisenberg D, Weiss RM, and Terwilliger TC . (1984). Proc. Natl. Acad. Sci., 81, 140–144.

  • Fahraeus R, Fischer P, Krausz E, and Lane DP . (1999). J. Pathol., 187, 138–146.

  • Fine RL, Chambers TC, and Sachs CW . (1996). Oncologist, 1, 261–268.

  • Foster BA, Coffey HA, Morin MJ, and Rastinejad F . (1999). Science, 286, 2507–2510.

  • Garnier J,G. J-F, and Robson B . (1996). Methods in Enzymology. Doolittle, R (ed). Academic Press: New York, pp. 540–553.

  • Harris CC . (1996). J. Natl. Cancer Inst., 88, 1442–1455.

  • Kanovsky M, Raffo A, Drew L, Rosal R, Do T, Friedman FK, Rubinstein P, Visser J, Brandt-Rauf PW, Fine R, Michl J, and Pincus MR . (2001). Proc. Natl. Acad. Sci., 98, 12438–12443.

  • Kim AL, Raffo AJ, Brandt-Rauf PW, Pincus MP, Monaco R, Abarzua P, and Fine RL . (1999). J. Biol. Chem., 274, 34924–34931.

  • Kussie PH, Gorina S, Marechal V, Elenbaas B, Moreau J, Levine AJ, and Pavletich NP . (1996). Science, 274, 948–953.

  • Levine AJ, Perry ME, Chang A, Silver A, Dihmer D, Wu M, and Welsh D . (1994). Br. J. Cancer, 69, 409–416.

  • Levine AJ . (1997). Cell, 88, 323–331.

  • Lofts FJ, Hurst HC, Sternberg MJE, and Gullick WJ . (1993). Oncogene, 8, 2813–2820.

  • Midgley CA, Desterro JM, Saville MK, Howard S, Sparks A, Hay RT, and Lane DP . (2000). Oncogene, 19, 2312–2323.

  • Momand J, Zambetti GP, Olson DC, George D, and Levine AJ . (1992). Cell, 69, 1237–1245.

  • Ozbun MA and Butel JS . (1995). Adv. Cancer Res., 66, 71–141.

  • Perczel A, Park K, and Fasman GD . (1991). Anal Biochem, 4, 669–679

  • Prives C and Hall PA . (1999). J. Pathol., 187, 112–126.

  • Prochiantz A . (1999). Ann. N. Y. Acad. Sci., 886, 172–179.

  • Rousselle C, Clair P, Lefauconnier JM, Kaczorek M, Scherrmann JM, and Temsamani J . (2000). Mol. Pharmacol., 57, 679–686

  • Schwarze SR and Dowdy SF . (2000). Trends Pharmacol. Sci., 21, 45–48.

  • Schwarze SR, Hruska KA, and Dowdy SF . (2000). Trends Cell Biol., 10, 290–295.

  • Segrest JP, De Loof H, Dohlman JG, Brouillette CG, and Anantharamaiah GM . (1990). Proteins, 8, 103–117.

  • Selivanova G, Ryabchenko L, Jansson E, Iotsova V, and Wiman KG . (1999). Mol. Cell Biol., 19, 3395–3402.

  • Selivanova G, Iotsova V, Okan I, Fritsche M, Strom M, Groner B, Grafstrom RC, and Wiman KG . (1997). Nat. Med., 3, 632–638.

  • Sherbert GV . (1989). Exp. Cell Biol., 57, 198–205.

  • Soussi T . (2000a). Bull. Cancer, 87, 689–690.

  • Soussi T . (2000b). Ann. N. Y. Acad. Sci., 910, 121–137.

  • Soussi T, Caron de Fromentel C, and May P . (1990). Oncogene, 5, 945–952.

  • Spector AA and Burns CD . (1987). Cancer Res., 47, 4529–4537.

  • Sreerama N and Woody RW (1993). Anal. Biochem., 209, 32–44.

  • Velculescu VE and El-Deiry WS . (1996). Clin. Chem., 42, 858–868.

  • Wang JL, Zhang ZJ, Choksi S, Shan S, Lu Z, Croce CM, Alnemri ES, Korngold R, and Huang Z . (2000). Cancer Res., 60, 1498–1502.

  • Wasylyk C, Salvi R, Argentini M, Dureuil C, Delumeau I, Abecassis J, Debussche L, and Wasylyk B . (1999). Oncogene., 18, 1921–1934.

  • Yeung TK, Germond C, Chen X, and Wang Z . (1999). Biochem. Biophys. Res. Commun., 263, 398–404.

  • Zhang R and Wang H . (2000). Curr. Pharmaceut. Des., 6, 393–416.

Download references

Acknowledgements

This work was supported in part by the National Institutes of Health RO1 Grant OH 04192 and Environmental Protection Agency Grant R826685 (to PWB-R); NIH RO1 Grant CA 82528 and a Herbert Irving Scholar Award (to RLF); and NIH RO1 Grant CA 42500, a Veteran's Affairs Merit Review Grant, and a grant from the Lustgarten Foundation for Pancreatic Cancer Research (to MRP). We thank Dr Yin Li for helpful discussion.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Robert L Fine or Paul W Brandt-Rauf.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Do, T., Rosal, R., Drew, L. et al. Preferential induction of necrosis in human breast cancer cells by a p53 peptide derived from the MDM2 binding site. Oncogene 22, 1431–1444 (2003). https://doi.org/10.1038/sj.onc.1206258

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1206258

Keywords

This article is cited by

Search

Quick links