Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

The noncatalytic TrkCNC2 receptor is cleaved by metalloproteases upon neurotrophin-3 stimulation

Abstract

The trkC locus encodes catalytic and noncatalytic receptors, generated by alternative splicing. These primary high-affinity neurotrophin-3 (NT-3) receptors may act in concert to modulate responsiveness to NT-3. Signal modulation can also be achieved by receptors that are post-translationally processed. We report that the noncatalytic TrkC receptor, TrkCNC2, is cleaved at the membrane-proximal region of its extracellular domain. This generates a soluble ectodomain (gp90TrkCNC2) recovered in the cell culture medium and a membrane-bound fragment (p20TrkCNC2), which contains the transmembrane and intracellular regions including the juxtamembrane and the NC2-specific cytoplasmic domains. We also show that this processing, which does not occur in the TrkC catalytic counterpart, is upregulated by NT-3 and upon treatment with the tumor promoter 12-O-tetradecanoylphorbol-13-acetate. Moreover, cleavage inhibition after EDTA or 1.10 phenanthroline treatment suggests involvement of a metalloprotease(s). Finally, this post-translational processing was observed not only in TrkCNC2-overexpressing NIH3T3 cells but also in primary cultures of cortical neurons and brain extracts. This study shows that, in addition to alternative splicing, ectodomain shedding represents a novel means of regulating TrkC receptor signaling, and consequently NT-3 biological effects on target cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Barbacid M . (1995). Curr. Opin. Cell Biol., 7, 148–155.

  • Biffo S, Offenhäuser N, Carter BD and Barde YA . (1995). Development, 121, 2461–2470.

  • Butowt R and Von Bartheld CS . (2001). J. Neurosci., 21, 8915–8930.

  • Cabrera N, Diaz-Rodriguez E, Becker E, Martin-Zanca D and Pandiella A . (1996). J. Cell Biol., 132, 427–436.

  • Clary DO and Reichardt LF . (1994). Proc. Natl. Acad. Sci. USA, 91, 11133–11137.

  • Diaz-Rodriguez E, Cabrera N, Esparis-Ogando A, Montero JC and Pandiella A . (1999). Eur. J. Neurosci., 11, 1421–1430.

  • DiStephano PS, Chelsea DM, Schick CM and McKelvy JF . (1993). J. Neurosci., 13, 2405–2414.

  • DiStephano PS and Johnson EM . (1988). Proc. Natl. Acad. Sci. USA, 85, 270–274.

  • Donovan MJ, Hahn R, Tessarollo L and Hempstead B . (1996). Nat. Genet., 14, 210–213.

  • Eide FF, Viing ER, Eide BL, Zang K, Wang XY and Reichardt LF . (1996). J. Neurosci., 16, 3123–3129.

  • Garner AS and Large TH . (1994). Neuron, 13, 457–472.

  • Götz R, Köste R, Winkler C, Raulf F, Lottspeich F, Schartl M and Thoenen H . (1994). Nature, 372, 266–269.

  • Hapner SJ, Boeshore KL, Large TH and Lefcort F . (1998). Dev. Biol., 201, 90–100.

  • Klein R, Conway D, Parada LF and Barbacid M . (1990). Cell, 61, 647–656.

  • Klein R, Jing S, Nanduri V, O'Rourke E and Barbacid M . (1991a). Cell, 65, 189–197.

  • Klein R, Nanduri V, Jing S, Lamballe F, Tapley P, Bryant S, Cordon-Cardo C, Jones K, Reichardt LF and Barbacid M . (1991b). Cell, 66, 395–403.

  • Lamballe F, Klein R and Barbacid M . (1991). Cell, 66, 967–979.

  • Lamballe F, Tapley P and Barbacid M . (1993). EMBO J., 12, 3083–3094.

  • Martin-Zanca D, Oskam R, Mitra G, Copeland T and Barbacid M . (1989). Mol. Cell. Biol., 9, 24–33.

  • Menn B, Timsit S, Calothy G and Lamballe F . (1998). J. Comp. Neurol., 401, 47–64.

  • Menn B, Timsit S, Represa A, Mateos S, Calothy G and Lamballe F . (2000). Eur. J. Neurosci., 12, 3211–3223.

  • Middlemas DS, Lindberg R.A and Hunter T . (1991). Mol. Cell. Biol., 11, 143–153.

  • Nilsson AS, Fainzilber M, Falck P and Ibanez CF . (1998). FEBS Lett., 424, 285–290.

  • Ninkina N, Grashchuck M, Buchman VL and Davies AM . (1997). J. Biol. Chem., 272, 13019–13025.

  • Pandiella A, Malgaroli A, Vicentini LM and Meldolesi J . (1986). FEBS Lett., 208, 48–51.

  • Schroeter EH, Kisslinger JA and Kopan R . (1998). Nature, 393, 382–386.

  • Shelton DL, Sutherland J, Gripp J, Camerato T, Armanini MP, Phillips HS, Carroll K, Spencer SD and Levinson AD . (1995). J. Neurosci., 15, 477–491.

  • Strohmaier C, Carter BD, Urfer R, Barde YA and Dechant G . (1996). EMBO J., 15, 3332–3337.

  • Tessarollo L, Tsoulfas P, Donovan MJ, Palko ME, Blair-Flynn J, Hempstead BL and Parada LF . (1997). Proc. Natl. Acad. Sci. USA, 94, 14776–14781.

  • Tsoulfas P, Soppet D, Escandon E, Tessarollo L, Mendoza-Ramirez JL, Rosenthal A, Nikolics K and Parada LF . (1993). Neuron, 10, 975–990.

  • Valenzuela DM, Maisonpierre PC, Glass DJ, Rojas E, Nunez L, Kong Y, Gies DR, Stitt TN, Ip NY and Yancopoulos GD . (1993). Neuron, 10, 963–974.

  • Vecchi M and Carpenter G . (1997). J. Cell Biol., 139, 995–1003.

  • Vecchi M, Rudolph-Owen L.A, Brown CL, Dempsey PJ and Carpenter G . (1998). J. Biol. Chem., 273, 20589–20595.

  • Yee NS, Langen H and Besmer P . (1993). J. Biol. Chem., 268, 14189–14201.

  • Zupan AA, Osborne PA, Smith CE, Siegel NR, Leimgruber RM and Johnson EM . (1989). J. Biol. Chem., 264, 11714–11720.

Download references

Acknowledgements

This work was funded by the Institut Curie, the Centre National de la Recherche Scientifique and by a grant from the Association pour la Recherche sur le Cancer to F.L. (no. 9802). S Mateos was supported by a fellowship from the French Ministère de l'Education Nationale, de l'Enseignement Supérieur et de la Recherche.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabienne Lamballe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mateos, S., Calothy, G. & Lamballe, F. The noncatalytic TrkCNC2 receptor is cleaved by metalloproteases upon neurotrophin-3 stimulation. Oncogene 22, 740–745 (2003). https://doi.org/10.1038/sj.onc.1206213

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1206213

Keywords

This article is cited by

Search

Quick links