Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Transient activation of NF-κB through a TAK1/IKK kinase pathway by TGF-β1 inhibits AP-1/SMAD signaling and apoptosis: implications in liver tumor formation

Abstract

NF-κB has been implicated in the regulation of apoptosis, a key mechanism of normal and malignant growth control. Previously, we demonstrated that inhibition of NF-κB activity by TGF-β1 leads directly to induction of apoptosis of murine B-cell lymphomas and hepatocytes. Thus, we were surprised to determine that NF-κB is transiently activated in response to TGF-β1 treatment. Here we elucidate the mechanism of TGF-β1-mediated regulation of NF-κB and induction of apoptosis in epithelial cells. We report that TGF-β1 activates IKK kinase, which mediates IκB-α phosphorylation. In turn, the activation of IKK following TGF-β1 treatment is mediated by the TAK1 kinase. As a result of NF-κB activation, IκB-α mRNA and protein levels are increased leading to postrepression of NF-κB and induction of cell death. Inhibition of NF-κB following TGF-β1 treatment increased AP-1 complex transcriptional activity through sustained c-Jun phosphorylation, thereby potentiating AP-1/SMADs-mediated cell killing. Furthermore, TGF-β1-mediated upregulation of Smad7 appeared independent of NF-κB. In hepatocellular carcinomas of TGF-β1 or TGF-α/c-myc transgenic mice, we observed constitutive activation of NF-κB that led to inhibition of JNK signaling. Overall, our data illustrate an autocrine mechanism based on the ability of IKK/NF-κB/IκB-α signaling to negatively regulate NF-κB levels thereby permitting TGF-β1-induced apoptosis through AP-1 activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  • Afrakhte M, Moren A, Jossan S, Itoh S, Sampath K, Westermark B, Heldin CH, Heldin NE and ten Dijke P . (1998). Biochem. Biophys. Res. Commun., 249, 505–511.

  • Arsura M, FitzGerald MJ, Fausto N and Sonenshein GE . (1997). Cell Growth Differ., 8, 1049–1059.

  • Arsura M, Mercurio F, Oliver AL, Thorgeirsson SS and Sonenshein GE . (2000). Mol. Cell Biol., 20, 5381–5391.

  • Arsura M, Wu M and Sonenshein GE . (1996). Immunity, 5, 31–40.

  • Atfi A, Djelloul S, Chastre E, Davis R and Gespach C . (1997). J. Biol. Chem., 272, 1429–1432.

  • Attisano L and Tuen Lee-Hoeflich S . (2001). Genome Biol., 2, 3010.1–3010.8.

  • Azuma M, Motegi K, Aota K, Yamashita T, Yoshida H and Sato M . (1999). Exp. Cell Res., 250, 213–222.

  • Baldwin Jr AS . (1996). Annu. Rev. Immunol., 14, 649–683.

  • Barkett M and Gilmore TD . (1999). Oncogene, 18, 6910–6924.

  • Barroga CF, Stevenson JK, Schwarz EM, and Verma IM . (1995). Proc. Natl. Acad. Sci. USA, 92, 7637–7641.

  • Beg AA, Sha WC, Bronson RT, Ghosh S and Baltimore D . (1995). Nature, 376, 167–170.

  • Birkey Reffey S, Wurthner JU, Parks WT, Roberts AB and Duckett CS . (2001). J. Biol. Chem., 276, 26542–26549.

  • Bitzer M, von Gersdorff G, Liang D, Dominguez-Rosales A, Beg AA, Rojkind M and Bottinger EP . (2000). Genes Dev., 14, 187–197.

  • Brodin G, Ahgren A, ten Dijke P, Heldin CH and Heuchel R . (2000). J. Biol. Chem., 275, 29023–29030.

  • Brown K, Gerstberger S, Carlson L, Franzoso G and Siebenlist U . (1995). Science, 267, 1485–1488.

  • Chang H, Lau AL and Matzuk MM . (2001). Mol. Cell Endocrinol., 180, 39–46.

  • Conte D, Liston P, Wong JW, Wright KE and Korneluk RG . (2001). Proc. Natl. Acad. Sci. USA, 98, 5049–5054.

  • De Smaele E, Zazzeroni F, Papa S, Nguyen DU, Jin R, Jones J, Cong R and Franzoso G . (2001). Nature, 414, 308–313.

  • Delhase M, Hayakawa M, Chen Y and Karin M . (1999). Science, 284, 309–313.

  • DiDonato J, Mercurio F, Rosette C, Wu-Li J, Suyang H, Ghosh S and Karin M . (1996). Mol. Cell Biol., 16, 1295–1304.

  • Duyao MP, Buckler AJ and Sonenshein GE . (1990). Proc. Natl. Acad. Sci. USA, 87, 4727–4731.

  • Engel ME, McDonnell MA, Law BK and Moses HL . (1999). J. Biol. Chem., 274, 37413–37420.

  • Factor V, Oliver AL, Panta GR, Thorgeirsson SS, Sonenshein GE and Arsura M . (2001). Hepatology, 34, 32–41.

  • Factor VM, Kao CY, Santoni-Rugiu E, Woitach JT, Jensen MR and Thorgeirsson SS . (1997). Cancer. Res., 57, 2089–2095.

  • Holcik M and Korneluk RG . (2001). Nat. Rev. Mol. Cell. Biol., 2, 550–556.

  • Holtmann H, Enninga J, Kalble S, Thiefes A, Dorrie A, Broemer M, Winzen R, Wilhelm A, Ninomiya-Tsuji J, Matsumoto K, Resch K and Kracht M . (2001). J. Biol. Chem., 276, 3508–3516.

  • Hu Y, Baud V, Delhase M, Zhang P, Deerinck T, Ellisman M, Johnson R and Karin M . (1999). Science, 284, 316–320.

  • Hu Y, Baud V, Oga T, Kim KI, Yoshida K and Karin M . (2001). Nature, 410, 710–714.

  • Irie T, Muta T and Takeshige K . (2000). FEBS Lett., 467, 160–164.

  • Karin M . (1996). Philos. Trans. R. Soc. Lond. B Biol. Sci., 351, 127–134.

  • Keeton MR, Curriden SA, van Zonneveld AJ and Loskutoff DJ . (1991). J. Biol. Chem., 266, 23048–23052.

  • Kimura N, Matsuo R, Shibuya H, Nakashima K and Taga T . (2000). J. Biol. Chem., 275, 17647–17652.

  • Le Bail O, Schmidt-Ullrich R and Israel A . (1993). EMBO J., 12, 5043–5049.

  • Lee H, Arsura M, Wu M, Duyao M, Buckler AJ and Sonenshein GE . (1995). J. Exp. Med., 181, 1169–1177.

  • Li Q, Lu Q, Hwang JY, Buscher D, Lee KF, Izpisua-Belmonte JC and Verma IM . (1999a). Genes Dev., 13, 1322–1328.

  • Li Q, Van Antwerp D, Mercurio F, Lee KF and Verma IM . (1999b). Science, 284, 321–325.

  • Lin R, Beauparlant P, Makris C, Meloche S and Hiscott J . (1996). Mol. Cell. Biol., 16, 1401–1409.

  • Luque I and Gelinas C . (1997). Semin. Cancer Biol., 8, 103–111.

  • Massague J . (1996). Cell, 85, 947–950.

  • Mercurio F and Manning AM . (1999). Curr. Opin. Cell Biol., 11, 226–232.

  • Mercurio F, Zhu H, Murray BW, Shevchenko A, Bennett BL, Li J, Young DB, Barbosa M, Mann M, Manning A and Rao A . (1997). Science, 278, 860–866.

  • Moriguchi T, Kuroyanagi N, Yamaguchi K, Gotoh Y, Irie K, Kano T, Shirakabe K, Muro Y, Shibuya H, Matsumoto K, Nishida E and Hagiwara M . (1996). J. Biol. Chem., 271, 13675–13679.

  • Nagarajan RP, Chen F, Li W, Vig E, Harrington MA, Nakshatri H and Chen Y . (2000). Biochem. J., 348, 591–596.

  • Nakao A, Afrakhte M, Moren A, Nakayama T, Christian JL, Heuchel R, Itoh S, Kawabata M, Heldin NE, Heldin CH and ten Dijke P . (1997). Nature, 389, 631–635.

  • Ninomiya-Tsuji J, Kishimoto K, Hiyama A, Inoue J, Cao Z and Matsumoto K . (1999). Nature, 398, 252–256.

  • Oberhammer F, Fritsch G, Pavelka M, Froschl G, Tiefenbacher R, Purchio T and Schulte-Hermann R . (1992). Toxicol. Lett., 64–65 (Spec No), 701–704.

  • Patil S, Wildey GM, Brown TL, Choy L, Derynck R and Howe PH . (2000). J. Biol. Chem., 275, 38363–38370.

  • Perlman R, Schiemann WP, Brooks MW, Lodish HF and Weinberg RA . (2001). Nat. Cell Biol., 3, 708–714.

  • Pianetti S, Arsura M, Romieu-Mourez R, Coffey RJ and Sonenshein GE . (2001). Oncogene, 20, 1287–1299.

  • Rosenfeld ME, Prichard L, Shiojiri N and Fausto N . (2000). Am. J. Pathol., 156, 997–1007.

  • Rudolph D, Yeh WC, Wakeham A, Rudolph B, Nallainathan D, Potter J, Elia AJ and Mak TW . (2000). Genes Dev., 14, 854–862.

  • Sakurai H, Miyoshi H, Toriumi W and Sugita T . (1999). J. Biol. Chem., 274, 10641–10648.

  • Sakurai H, Shigemori N, Hasegawa K and Sugita T . (1998). Biochem. Biophys. Res. Commun., 243, 545–549.

  • Sanderson N, Factor V, Nagy P, Kopp J, Kondaiah P, Wakefield L, Roberts AB, Sporn MB and Thorgeirsson SS . (1995). Proc. Natl. Acad. Sci. USA, 92, 2572–2576.

  • Selvakumaran M, Lin HK, Sjin RT, Reed JC, Liebermann DA and Hoffman B . (1994). Mol. Cell Biol., 14, 2352–2360.

  • Senftleben U, Cao Y, Xiao G, Greten FR, Krahn G, Bonizzi G, Chen Y, Hu Y, Fong A, Sun SC and Karin M . (2001). Science, 293, 1495–1499.

  • Shirakabe K, Yamaguchi K, Shibuya H, Irie K, Matsuda S, Moriguchi T, Gotoh Y, Matsumoto K and Nishida E . (1997). J. Biol. Chem., 272, 8141–8144.

  • Sovak MA, Arsura M, Zanieski G, Kavanagh KT and Sonenshein GE . (1999). Cell Growth Differ., 10, 537–544.

  • Takaesu G, Kishida S, Hiyama A, Yamaguchi K, Shibuya H, Irie K, Ninomiya-Tsuji J, and Matsumoto K . (2000). Mol. Cell, 5, 649–658.

  • Takaesu G, Ninomiya-Tsuji J, Kishida S, Li X, Stark GR and Matsumoto K . (2001). Mol. Cell Biol., 21, 2475–2484.

  • Takeda K, Takeuchi O, Tsujimura T, Itami S, Adachi O, Kawai T, Sanjo H, Yoshikawa K, Terada N and Akira S . (1999). Science, 284, 313–316.

  • Tanaka M, Fuentes ME, Yamaguchi K, Durnin MH, Dalrymple SA, Hardy KL and Goeddel DV . (1999). Immunity, 10, 421–429.

  • Tang G, Minemoto Y, Dibling B, Purcell NH, Li Z, Karin M and Lin A . (2001). Nature, 414, 313–317.

  • Verma IM, Stevenson JK, Schwarz EM, Van Antwerp D and Miyamoto S . (1995). Genes Dev., 9, 2723–2735.

  • Wang C, Deng L, Hong M, Akkaraju GR, Inoue J and Chen ZJ . (2001). Nature, 412, 346–351.

  • Williams KL, Nanda I, Lyons GE, Kuo CT, Schmid M, Leiden JM, Kaplan MH and Taparowsky, EJ . (2001). Eur. J. Immunol., 31, 1620–1627.

  • Wu JC, Merlino G, Cveklova K, Mosinger Jr B and Fausto N . (1994). Cancer Res., 54, 5964–5973.

  • Yamaguchi K, Nagai S, Ninomiya-Tsuji J, Nishita M, Tamai K, Irie K, Ueno N, Nishida E, Shibuya H and Matsumoto K . (1999). EMBO J., 18, 179–187.

  • Yamaguchi K, Shirakabe K, Shibuya H, Irie K, Oishi I, Ueno N, Taniguchi T, Nishida E and Matsumoto K . (1995). Science, 270, 2008–2011.

  • Yamamura Y, Hua X, Bergelson S and Lodish HF . (2000). J. Biol. Chem., 275, 36295–36302.

  • Yao Z, Zhou G, Wang XS, Brown A, Diener K, Gan H and Tan TH . (1999). J. Biol. Chem., 274, 2118–2125.

  • Yingling JM, Datto MB, Wong C, Frederick JP, Liberati NT and Wang XF . (1997). Mol. Cell Biol., 17, 7019–7028.

  • Zhang Y, Feng XH and Derynck R . (1998). Nature, 394, 909–913.

Download references

Acknowledgements

We gratefully acknowledge John Hiscott, Nelson Fausto, Qimin Zhan, Yasuko Yamamura, Carlos Paya, David Sassoon, Hiroaki Sakurai, Parker Suttle, Kyoko Yamaguchi, Michael Karin, Robert Korneluk, and Peter ten Dijke for kindly providing cloned DNAs and cell lines.

This work was supported by grants from the Charlotte Geyer Foundation (MA), from the ACS IRG-72-001-24 (MA) and CA78616 (MA) and in part from the NIH Grants CA82742 and CA36355 (G.E.S.). GR Panta was sponsored in part by the American Liver Foundation Irwin M Arias, MD, Postdoctoral Research Fellowship. JD Bilyeu was sponsored by a predoctoral fellowship from the NIHPhRMA Foundation. LG Cavin was supported by a Research Supplement for Under Represented Minorities Program CA78616-S1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcello Arsura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arsura, M., Panta, G., Bilyeu, J. et al. Transient activation of NF-κB through a TAK1/IKK kinase pathway by TGF-β1 inhibits AP-1/SMAD signaling and apoptosis: implications in liver tumor formation. Oncogene 22, 412–425 (2003). https://doi.org/10.1038/sj.onc.1206132

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1206132

Keywords

This article is cited by

Search

Quick links