Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

A global DNA repair mechanism involving the Cockayne syndrome B (CSB) gene product can prevent the in vivo accumulation of endogenous oxidative DNA base damage

Abstract

The Cockayne syndrome B (CSB) gene product is involved in the repair of various types of base modifications in actively transcribed DNA sequences. To investigate its significance for the repair of endogenous oxidative DNA damage, homozygous csb−/−/ogg1−/− double knockout mice were generated. These combine the deficiency of CSB with that of OGG1, a gene coding for the mammalian repair glycosylase that initiates the base excision repair of 7,8-dihydro-8-oxoguanine (8-oxoG). Compared to ogg1−/− mice, csb−/−/ogg1−/− mice were found to accumulate with age severalfold higher levels of oxidited purine modifications in hepatocytes, splenocytes and kidney cells. In contrast, the basal (steady-state) levels of oxidative DNA modifications in cells from csb−/− mice were not different from those in wild-type mice and did not increase with age. The analysis of the repair rates of additional oxidative DNA base modifications induced by photosensitization in immortalized embryonic fibroblasts was in accordance with these findings: compared to wild-type cells, the global repair was only slightly affected in csb−/− cells, more compromised in ogg1−/− cells, but virtually absent in csb−/−/ogg1−/− cells. An inhibition of transcription by α-amanitin did not block the Csb-dependent repair in ogg1−/− fibroblasts. The influence of Csb on the global repair of 8-oxoG was not detectable in assays with total protein extracts and in a shuttle vector system. The data indicate a role for Csb in the removal of 8-oxoG from the overall genome that is independent of both Ogg1-mediated base excision repair and regular transcription.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Ames BN, Shigenaga MK, Hagen TM . 1993 Proc. Natl. Acad. Sci. USA 90: 7915–7922

  • Bochar DA, Wang L, Beniya H, Kinev A, Xue Y, Lane WS, Wang W, Kashanchi F, Shiekhattar R . 2000 Cell 102: 257–265

  • Bohr VA, Smith CA, Okumoto DS, Hanawalt PC . 1985 Cell 40: 359–369

  • Boiteux S, Radicella JP . 2000 Arch. Biochem. Biophys. 377: 1–8

  • Boiteux S, O'Connor TR, Lederer F, Gouyette A, Laval J . 1990 J. Biol. Chem. 265: 3916–3922

  • Bruner SD, Norman DPG, Verdine YL . 2000 Nature 403: 859–866

  • Cheng KC, Cahill DS, Kasai H, Nishimura S, Loeb LA . 1992 J. Biol. Chem. 267: 166–172

  • Citterio E, Van Den Boom V, Schnitzler G, Kanaar R, Bonte E, Kingston RE, Hoeijmakers JH, Vermeulen W . 2000 Mol. Cell. Biol. 20: 7643–7653

  • Dianov G, Bischoff C, Sunesen M, Bohr VA . 1999 Nucleic Acids Res. 27: 1365–1368

  • Doll R, Peto R . 1981 J. Natl. Cancer. Inst. 66: 1191–1308

  • Friedberg EC . 1996 Ann. Rev. Biochem. 65: 15–42

  • Hazra TK, Izumi T, Maidt L, Floyd RA, Mitra S . 1998 Nucleic Acids Res. 27: 4001–4007

  • Hazra TK, Izumi T, Boldogh I, Imhoff B, Kow YW, Jaruga P, Dizdaroglu M, Mitra S . 2002 Proc. Natl. Acad. Sci. USA 99: 3523–3528

  • Hengstler JG, Utesch D, Steinberg P, Platt KL, Diener B, Ringel M, Swales N, Fischer T, Biefang K, Gerl M, Bottger T, Oesch F . 2000 Drug. Metab. Rev. 32: 81–118

  • Hollenbach S, Dhénaut A, Eckert I, Radicella JP, Epe B . 1999 Carcinogenesis 20: 1863–1868

  • Kapranov P, Cawley SE, Drenkow J, Bekiranov S, Strausberg RL, Fodor SPA, Gingeras TR . 2002 Science 296: 916–919

  • Klungland A, Lindahl T . 1997 EMBO J. 16: 3341–3348

  • Klungland A, Rosewell I, Hollenbach S, Larsen E, Daly G, Epe B, Seeberg E, Lindahl T, Barnes DE . 1999 Proc. Natl. Acad. Sci. USA 96: 13300–13305

  • Kohn KW, Erickson LC, Ewig RAG, Friedman CA . 1976 Biochemistry 15: 4629–4637

  • Le Page F, Guy A, Cadet J, Sarasin A, Gentil A . 1998 Nucleic Acids Res. 26: 1276–1281

  • Le Page F, Klungland A, Barnes DE, Sarasin A, Boiteux S . 2000a Proc. Natl. Acad. Sci. USA 97: 8397–8402

  • Le Page F, Kwoh EE, Avrutskaya A, Gentil A, Leadon SA, Sarasin A, Cooper PK . 2000b Cell 101: 159–171

  • Le Page F, Randrianarison V, Marot D, Cabannes J, Perricaudet M, Feunteun J, Sarasin A . 2000c Cancer Res. 60: 5548–5552

  • Lichtenstein P, Holm NV, Verkasalo PK, Iliadou A, Kaprio J, Koskenvuo M, Pukkala E, Skytthe A, Hemminki K . 2000 N. Engl. J. Med. 343: 78–85

  • Lindahl T, Wood RD . 1999 Science 286: 1897–1905

  • Michaels ML, Miller JH . 1992 J. Bacteriol. 174: 6321–6325

  • Minowa O, Arai T, Hirano M, Monden Y, Nakai S, Fukuda M, Itoh M, Takano H, Hippou Y, Aburatani H, Masumura K, Nohmi T, Nishimura S, Noda T . 2000 Proc. Natl. Acad. Sci. USA 97: 4156–4161

  • Moriya M . 1993 Proc. Natl. Acad. Sci. USA 90: 1122–1126

  • Osterod M, Hollenbach S, Hengstler JG, Barnes DE, Lindahl T, Epe B . 2001 Carcinogenesis 22: 1459–1463

  • Pflaum M, Will O, Epe B . 1997 Carcinogenesis 18: 2225–2231

  • Risch N . 2001 Cancer Epidemiol. Biomarkers Prev. 10: 733–741

  • Seeberg E, Eide L, Bjøras M . 1995 Trends Biol. Sci. 20: 391–397

  • Sunesen M, Stevnsner T, Brosh Jr RM, Dianov GL, Bohr VA . 2002 Oncogene 21: 3571–3578

  • Thomas D, Scot AD, Barbey R, Padula M, Boiteux S . 1997 Molec. Gen. Genet. 254: 171–178

  • Thorslund T, Sunesen M, Bohr VA, Stevnsner T . 2002 DNA repair 1: 261–273

  • Todaro GJ, Green H . 1963 J. Cell Biol. 17: 299–313

  • Tomatis L (ed) . 1990 Cancer: causes, occurrence, and control. Lyon, France: IARC scientific publications

    Google Scholar 

  • Tornaletti S, Hanawalt PC . 1999 Biochimie 81: 139–146

  • Tuo J, Muftuoglu M, Chen C, Jaruga P, Selzer RR, Brosh Jr RM, Rodriguez H, Dizdaroglu M, Bohr VA . 2001 J. Biol. Chem. 276: 45772–45779

  • Van der Horst GT, van Steeg H, Berg RJ, van Gool AJ, de Wit J, Weeda G, Morreau H, Beems RB, van Kreijl CF, de Gruijl FR, Bootsma D, Hoeijmakers JH . 1997 Cell 89: 425–435

  • Venema J, Mullenders LH, Natarajan AT, van Zeeland AA, Mayne LV . 1990 Proc. Natl. Acad. Sci. USA 87: 4707–4711

  • Will O, Gocke E, Eckert I, Schulz I, Pflaum M, Mahler HC, Epe B . 1999 Mutat. Res. 435: 89–101

  • Wood ML, Dizdaroglu M, Gajewski E, Essigmann JM . 1990 Biochemistry 29: 7024–7032

  • Ye Q, Hu YF, Zhong H, Nye AC, Belmont AS, Li R . 2001 J. Cell. Biol. 155: 911–921

Download references

Acknowledgements

We thank Dr Deborah Barnes (Cancer Research UK, London) for providing ogg1−/− mice. This work was supported by the Deutsche Forschungsgemeinschaft (SFB 519), the PROCOPE program and the Association pour la Recherche sur le Cancer (No 5432 to S Boiteux). E Larsen and A Klungland acknowledge the support from the Norwegian Cancer Society, the Top research Program, the Research Council of Norway and support to the ‘DNage’ collaboration by the EU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Epe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Osterod, M., Larsen, E., Le Page, F. et al. A global DNA repair mechanism involving the Cockayne syndrome B (CSB) gene product can prevent the in vivo accumulation of endogenous oxidative DNA base damage. Oncogene 21, 8232–8239 (2002). https://doi.org/10.1038/sj.onc.1206027

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1206027

Keywords

This article is cited by

Search

Quick links