Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Negative regulation of urokinase-type plasminogen activator production through FGF-2-mediated activation of phosphoinositide 3-kinase

Abstract

Activation of phosphoinositide 3-kinase (PI3-kinase) is involved in many cellular responses. FGF-2 is one of the potent inducers of urokinase-type plasminogen activator (uPA) production in endothelial cells. However, little is known about the molecular mechanisms underlying FGF-2-mediated uPA production. Here we examined the signal transduction pathways involved in the regulation of uPA production by FGF-2-treatment. FGF-2 potently upregulated uPA production in murine brain capillary endothelial cells (IBE cells), as well as porcine aortic endothelial (PAE) cells and L6 myoblasts ectopically expressing FGFR1. PI3-kinase inhibitors, wortmannin and LY294002, both enhanced FGF-2-dependent uPA production by these cells. Stable expression of activated mutant p110α catalytic subunit of PI3-kinase into IBE cells decreased FGF-2-mediated uPA production, suggesting that PI3-kinase exhibited the negative regulatory effect on uPA production. No increase in FGF-2-induced PI3-kinase activity was observed in proteins immunoprecipitated by anti-phosphotyrosine antibody. Although stable expression of deleted mutant p85α regulatory subunit, which lacks association with p110 catalytic subunit, in IBE cells showed no dominant negative effect, transient expression of dominant negative Ras inhibited FGF-2-mediated PI3-kinase activation. These results suggest that only activated Ras contributed the FGF-2-mediated PI3-kinase activation. In cells stably expressing mutant p85α subunit, FGF-2 efficiently induced uPA production. Taken together, activation of PI3-kinase by FGF-2 is Ras-dependent and results in down-regulation of uPA production.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Aguirre-Ghiso JA, Alonso DF, Farias EF, Gomez DE, Joffe EBK . 1999a Eur. J. Biochem. 263: 295–304

  • Aguirre-Ghiso JA, Flankel P, Farias EF, Lu Z, Olsen JA, Feig LA, Joffe EBK, Foster DA . 1999b Oncogene 18: 4718–4725

  • Bajou K, Noël A, Gerard RD, Masson V, Brunner N, Holst-Hansen C, Skobe M, Fusenig NE, Carmeliet P, Collen D, Foidart JM . 1998 Nature Med. 4: 923–928

  • Bajou K, Masson V, Gerard RD, Schmitt PM, Albert V, Praus M, Lund LR, Frandsen TL, Brunner N, Dano K, Fusenig NE, Weidle U, Carmeliet G, Loskutoff D, Collen D, Carmeliet P, Foidart JM, Noël A . 2001 J. Cell Biol. 152: 777–784

  • Blasi F . 1993 BioEssays 15: 105–111

  • Boilly B, Vercoutter-Edouart AS, Hondermarck H, Nurcombe V, Le Bourhis X . 2000 Cytokine Growth Factor Rev. 11: 295–302

  • Chan TO, Rittenhouse SE, Tsichlis PN . 1999 Annu. Rev. Biochem. 68: 965–1014

  • Duronio V, Scheid MP, Ettinger S . 1998 Cell Signal. 10: 233–239

  • Fruman DA, Meyers RE, Cantley LC . 1998 Annu. Rev. Biochem. 67: 481–507

  • Giuliani R, Bastaki M, Coltrini D, Presta M . 1999 J. Cell Sci. 112: 2597–2606

  • Gum R, Juarez J, Allegayer H, Mazar A, Wang Y, Boyd D . 1998 Oncogene 17: 213–225

  • Holt KH, Olson L, Moye-Rowley WS, Pessin JE . 1994 Mol. Cell. Biol. 14: 42–49

  • Jiang B-H, Zheng JZ, Aoki M, Vogt PK . 2000 Proc. Natl. Acad. Sci. USA 97: 1749–1753

  • Kanda S, Hodgkin MN, Woodfield RJ, Wakelam MJO, Thomas G, Claesson-Welsh L . 1997 J. Biol. Chem. 272: 23347–23353

  • Kanda S, Landgren E, Ljungström M, Claesson-Welsh L . 1996 Cell Growth Differ. 7: 383–395

  • Klint P, Claesson-Welsh L . 1999 Frontiers Biosci. 4: d165–d177

  • Klint P, Kanda S, Claesson-Welsh L . 1995 J. Biol. Chem. 270: 23337–23344

  • Klippel A, Escobedo JA, Fantl WJ, Williams LT . 1992 Mol. Cell. Biol. 12: 1451–1459

  • Klippel A, Reinhard C, Fantl WJ, Williams LT . 1996 Mol. Cell. Biol. 16: 4117–4127

  • Kotani K, Ogawa W, Hino Y, Kitamura T, Ueno H, Sano W, Sutherland C, Granner DK, Kasuga M . 1999 J. Biol. Chem. 274: 21305–21312

  • Kotani K, Yonezawa K, Hara K, Ueda H, Kitamura Y, Sakaue H, Ando A, Chavanieu A, Calas B, Grigorescu F, Nishiyama M, Waterfield MD, Kasuga M . 1994 EMBO J. 13: 2313–2321

  • Koziczak M, Krek W, Nagamine Y . 2000 Mol. Cell. Biol. 20: 2014–2022

  • Mohammadi M, Dikic I, Sorokin A, Burgess WH, Jaye M, Schlessinger J . 1996 Mol. Cell. Biol. 16: 977–989

  • Ogawa W, Matozaki T, Kasuga M . 1998 Mol. Cell. Biochem. 182: 13–22

  • Ong SH, Hadari YR, Gotoh N, Guy GR, Schlessinger J, Lax I . 2001 Proc. Natl. Acad. Sci. USA 98: 6074–6079

  • Pepper MS, Montesano R, Mandriota SJ, Orci L, Vassalli JD . 1996 Enzyme Protein. 49: 138–162

  • Raffioni S, Bradshow RA . 1992 Proc. Natl. Acad. Sci. USA 89: 9121–9125

  • Rodriguez-Viciana P, Warne PH, Dhand R, Vanhaesebroeck B, Gout I, Fry MJ, Waterfield MD, Downward J . 1994a Nature 370: 527–532

  • Rodriguez-Viciana P, Warne PH, Vanhaesebroeck B, Waterfield MD, Downward J . 1994b EMBO J. 15: 2442–2451

  • Roghani M, Mohammadi M, Schlessinger J, Moscatelli D . 1996 J. Biol. Chem. 271: 31154–31159

  • Rommel C, Clarke BA, Zimmermann S, Nunez L, Rossman R, Reid K, Moelling K, Yancopoulos GD, Glass DJ . 1999 Science 286: 1738–1741

  • Roymans D, Slegers H . 2001 Eur. J. Biochem. 268: 487–498

  • Songyang Z, Shoelson SE, Chaudhuri M, Gish G, Pawson T, Haser WG, King F, Roberts T, Ratnofsky S, Lechleider RJ, Neel BG, Birge RB, Fajardo JE, Chou MM, Hanafusa H, Schaffhausen B, Cantley LC . 1993 Cell 72: 767–778

  • Stein RC, Waterfield MD . 2000 Mol. Med. Today 6: 347–357

  • Sutor SL, Broman BT, Armstrong EA, Abraham RT, Karnitz LM . 1999 J. Biol. Chem. 274: 7002–7010

  • Toker A, Newton AC . 2000 Cell 103: 185–188

  • van Weering D, de Rooij J, Marte B, Downward J, Bos JL, Burgering BM . 1998 Mol. Cell. Biol. 18: 1802–1811

  • Vassalli J-D, Belin D . 1987 FEBS Lett. 214: 187–191

  • Wang W, Abbruzzese JL, Evans DB, Chiao PJ . 1999 Oncogene 18: 4554–4563

  • Wennstrom S, Downward J . 1999 Mol. Cell. Biol. 19: 4279–4288

  • Wennstrom S, Landgren E, Blume-Jensen P, Claesson-Welsh L . 1992 J. Biol. Chem. 267: 13749–13756

  • Wymann MP, Pirola L . 1998 Biochim. Biophys. Acta 1436: 127–150

  • Zimmermann S, Moelling K . 1999 Science 286: 1741–1744

Download references

Acknowledgements

We are grateful to Dr Carl-Henrik Heldin for the kind gifts of L6 myoblasts and PAE cells. We also acknowledge Drs Wataru Ogawa and Masato Kasuga for their kind gifts of plasmids encoding myristylated p110α catalytic subunit of bovine PI3-kinase and deleted mutant p85α regulatory subunit of bovine PI3-kinase. We also thank Dr Hiroshi Kikuchi for TFL-5 and -8 liposomes. The excellent outstanding help of Mr Takumi Shimogama and Ms Miki Yoshimoto in our laboratory, and members of the Nagasaki University Radioisotope Center is greatly appreciated. This work was partly supported by the Grant-in-Aid for Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeru Kanda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mochizuki, Y., Tsuda, S., Kanetake, H. et al. Negative regulation of urokinase-type plasminogen activator production through FGF-2-mediated activation of phosphoinositide 3-kinase. Oncogene 21, 7027–7033 (2002). https://doi.org/10.1038/sj.onc.1205736

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1205736

Keywords

Search

Quick links