Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Global genome repair of 8-oxoG in hamster cells requires a functional CSB gene product

Abstract

Cockayne syndrome (CS) is an autosomal recessive human disease characterized by UV-sensitivity as well as neurological and developmental abnormalities. Two complementation groups have been established, designated CS-A and CS-B. Traditionally, CSA and CSB have been ascribed a function in the transcription-coupled repair (TCR) pathway of nucleotide excision repair (NER) that efficiently removes bulky lesions from the transcribed strand of RNA polymerase II transcribed genes. To assess the role of the CSB protein in the repair of the highly mutagenic base lesion 7,8-dihydro-8-oxoguanine (8-oxoG), we have investigated the removal of this lesion using an in vitro incision approach with cell extracts as well as an in vivo approach with a modified protocol of the gene-specific repair assay, which allows the measurement of base lesion repair in intragenomic sequences. Our results demonstrate that the integrity of the CSB protein is pivotal for processes leading to incision at the site of 8-oxoG and that the global genome repair (GGR) of this lesion requires a functional CSB gene product in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Anson RM, Bohr VA . 1999 Methods Mol. Biol. 113: 257–279

  • Anson RM, Croteau DL, Stierum RH, Filburn C, Parsell R, Bohr VA . 1998 Nucleic Acids Res. 26: 662–668

  • Balajee AS, May A, Dianov GL, Friedberg EC, Bohr VA . 1997 Proc. Natl. Acad. Sci. USA 94: 4306–4311

  • Bessho T . 1999 Nucleic Acids Res. 27: 979–983

  • Bessho T, Roy R, Yamamoto K, Kasai K, Nishimura S, Tano K, Mitra S . 1993 Proc. Natl. Acad. Sci. USA 90: 8901–8904

  • Bjoras M, Luna L, Johnsen B, Hoff E, Haug T, Rognes T, Seeberg E . 1997 EMBO J. 16: 6314–6322

  • Bohr VA, Dianov GL . 1999 Biochimie 81: 155–160

  • Bohr VA, Okumoto DS . 1988 Friedberg EC and Hanawalt PC. (eds) New York: Marcel Dekker pp 347–366

  • Bohr VA, Smith CA, Okumoto DS, Hanawalt PC . 1985 Cell 40: 359–369

  • Boiteux S, Gajewski E, Laval J, Dizdaroglu M . 1992 Biochemistry 31: 106–110

  • Boiteux S, Radicella JP . 1999 Biochimie 81: 59–67

  • Brosh Jr RM, Balajee AS, Selzer RR, Sunesen M, De Santis LP, Bohr VA . 1999 Mol. Biol. Cell 10: 3583–3594

  • Cheng KC, Cahill DS, Kasai H, Nishimura S, Loeb LA . 1992 J. Biol. Chem. 267: 166–172

  • Citterio E, Rademakers S, van der Horst GT, van Gool AJ, Hoeijmakers JH, Vermeulen W . 1998 J. Biol. Chem. 273: 11844–11851

  • Cooper PK, Nouspikel T, Clarkson SG, Leadon SA . 1997 Science 275: 990–993

  • Dianov G, Bischoff C, Piotrowski J, Bohr VA . 1998 J. Biol. Chem. 273: 33811–33816

  • Dianov G, Bischoff C, Sunesen M, Bohr VA . 1999 Nucleic Acids Res. 27: 1365–1368

  • Dianov GL, Houle JF, Iyer N, Bohr VA, Friedberg EC . 1997 Nucleic Acids Res. 25: 3636–3642

  • Engelward BP, Weeda G, Wyatt MD, Broekhof JL, de Wit J, Donker I, Allan JM, Gold B, Hoeijmakers JH, Samson LD . 1997 Proc. Natl. Acad. Sci. USA 94: 13087–13092

  • Gorbalenya AE, Koonin EV, Donchenko AP, Blinov VM . 1989 Nucleic Acids Res. 17: 4713–4730

  • Grishko VI, Driggers WJ, LeDoux SP, Wilson GL . 1997 Mutat. Res. 384: 73–80

  • Hazra TK, Izumi T, Maidt L, Floyd RA, Mitra S . 1998 Nucleic Acids Res. 26: 5116–5122

  • Henning KA, Li L, Iyer N, McDaniel LD, Reagan MS, Legerski R, Schultz RA, Stefanini M, Lehmann AR, Mayne LV, Friedberg EC . 1995 Cell 82: 555–564

  • Htun H, Johnston BH . 1992 Methods Enzymol. 212: 272–294

  • Klungland A, Rosewell I, Hollenbach S, Larsen E, Daly G, Epe B, Seeberg E, Lindahl T, Barnes DE . 1999 Proc. Natl. Acad. Sci. USA 96: 13300–13305

  • Krokan HE, Nilsen H, Skorpen F, Otterlei M, Slupphaug G . 2000 FEBS Lett. 476: 73–77

  • Krokan HE, Standal R, Slupphaug G . 1997 Biochem. J. 325: 1–16

  • Kung HC, Bolton PH . 1997 J. Biol. Chem. 272: 9227–9236

  • Le Page F, Gentil A, Sarasin A . 1999 Biochimie 81: 147–153

  • Le Page F, Klungland A, Barnes DE, Sarasin A, Boiteux S . 2000a Proc. Natl. Acad. Sci. USA 97: 8397–8402

  • Le Page F, Kwoh EE, Avrutskaya A, Gentil A, Leadon SA, Sarasin A, Cooper PK . 2000b Cell 101: 159–171

  • Lehmann AR . 1982 Mutat Res. 106: 347–356

  • Lin JJ, Sancar A . 1989 Biochemistry 28: 7979–7984

  • Ljungman M, Zhang F . 1996 Oncogene 13: 823–831

  • Manley JL, Fire A, Samuels M, Sharp PA . 1983 Methods Enzymol. 101: 568–582

  • Mayne LV, Lehmann AR . 1982 Cancer Res. 42: 1473–1478

  • Memisoglu A, Samson L . 2000 Mutat Res. 451: 39–51

  • Mu D, Hsu DS, Sancar A . 1996 J. Biol. Chem. 271: 8285–8294

  • Nance MA, Berry SA . 1992 Am. J. Med. Genet. 42: 68–84

  • Nouspikel T, Lalle P, Leadon SA, Cooper PK, Clarkson SG . 1997 Proc. Natl. Acad. Sci. USA 94: 3116–3121

  • Reardon JT, Bessho T, Kung HC, Bolton PH, Sancar A . 1997 Proc. Natl. Acad. Sci. USA 94: 9463–9468

  • Roldan-Arjona T, Wei YF, Carter KC, Klungland A, Anselmino C, Wang RP, Augustus M, Lindahl T . 1997 Proc. Natl. Acad. Sci. USA 94: 8016–8020

  • Rolig RL, McKinnon PJ . 2000 Trends Neurosci. 23: 417–424

  • Selby CP, Sancar A . 1997a Proc. Natl. Acad. Sci. USA 94: 11205–11209

  • Selby CP, Sancar A . 1997b J. Biol. Chem. 272: 1885–1890

  • Shivji MK, Eker AP, Wood RD . 1994 J. Biol. Chem. 269: 22749–22757

  • Sunesen M, Selzer RR, Brosh Jr RM, Balajee AS, Stevnsner T, Bohr VA . 2000 Nucleic Acids Res. 28: 3151–3159

  • Taffe BG, Larminat F, Laval J, Croteau DL, Anson RM, Bohr VA . 1996 Mutat Res. 364: 183–192

  • Tantin D . 1998 J. Biol. Chem. 273: 27794–27799

  • Tantin D, Kansal A, Carey M . 1997 Mol. Cell Biol. 17: 6803–6814

  • Thorslund T, Sunesen M, Bohr VA, Stevnsner T . 2002 DNA Repair In Press

  • Troelstra C, van Gool A, de Wit J, Vermeulen W, Bootsma D, Hoeijmakers JH . 1992 Cell 71: 939–953

  • van Gool AJ, Citterio E, Rademakers S, van Os R, Vermeulen W, Constantinou A, Egly JM, Bootsma D, Hoeijmakers JH . 1997 EMBO J. 16: 5955–5965

  • van Hoffen A, Natarajan AT, Mayne LV, van Zeeland AA, Mullenders LH, Venema J . 1993 Nucleic Acids Res. 21: 5890–5895

  • Venema J, Mullenders LH, Natarajan AT, van Zeeland AA, Mayne LV . 1990 Proc. Natl. Acad. Sci. USA 87: 4707–4711

  • Viswanathan A, Doetsch PW . 1998 J. Biol. Chem. 273: 21276–21281

  • Will O, Gocke E, Eckert I, Schulz I, Pflaum M, Mahler HC, Epe B . 1999 Mutat Res. 435: 89–101

  • Woods CG . 1998 Arch. Dis. Child 78: 178–184

Download references

Acknowledgements

We appreciate the comments by T Thorslund and the technical assistance by UB Henriksen. RO19-8022 was a gift from Hoffman la Roche AG (Basel, Switzerland) and S Boiteux kindly provided the Fpg enzyme. TS was supported by The Danish Research Council and MS was supported by EU grant (QLK6-CT-1999-02002). The Novo Nordic Foundation, Eva and Henry Frænkels Foundation, and the foundation of 17.12.1981 supported the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vilhelm A Bohr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sunesen, M., Stevnsner, T., Brosh Jr, R. et al. Global genome repair of 8-oxoG in hamster cells requires a functional CSB gene product. Oncogene 21, 3571–3578 (2002). https://doi.org/10.1038/sj.onc.1205443

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1205443

Keywords

This article is cited by

Search

Quick links