Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

The leukemia-associated transcription repressor AML1/MDS1/EVI1 requires CtBP to induce abnormal growth and differentiation of murine hematopoietic cells

Abstract

The leukemia-associated fusion gene AML1/MDS1/EVI1 (AME) encodes a chimeric transcription factor that results from the (3;21)(q26;q22) translocation. This translocation is observed in patients with therapy-related myelodysplastic syndrome (MDS), with chronic myelogenous leukemia during the blast crisis (CML-BC), and with de novo or therapy-related acute myeloid leukemia (AML). AME is obtained by in-frame fusion of the AML1 and MDS1/EVI1 genes. We have previously shown that AME is a transcriptional repressor that induces leukemia in mice. In order to elucidate the role of AME in leukemic transformation, we investigated the interaction of AME with the transcription co-regulator CtBP1 and with members of the histone deacetylase (HDAC) family. In this report, we show that AME physically interacts in vivo with CtBP1 and HDAC1 and that these co-repressors require distinct regions of AME for interaction. By using reporter gene assays, we demonstrate that AME represses gene transcription by CtBP1-dependent and CtBP1-independent mechanisms. Finally, we show that the interaction between AME and CtBP1 is biologically important and is necessary for growth upregulation and abnormal differentiation of the murine hematopoietic precursor cell line 32Dc13 and of murine bone marrow progenitors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  • Amann JM, Nip J, Strom DK, Lutterbach B, Harada H, Lenny N, Downing JR, Meyers S, Hiebert SW . 2001 Mol. Cell Biol. 21: 6470–6483

  • Bertos NR, Wang AH, Yang XJ . 2001 Biochem. Cell Biol. 79: 243–252

  • Chakrabarti S, Nucifora G . 1999 Biochem. Biophys. Res. Comm. 264: 871–877

  • Chakraborty S, Senyuk V, Sitailo S, Chi Y, Nucifora G . 2001 J. Biol. Chem. 276: 44936–44943

  • Cuenco GM, Nucifora G, Ren R . 2000 Proc. Natl. Acad. Sci. USA 97: 1760–1765

  • Du C, Redner RL, Cooke MP, Lavau C . 1999 Blood 94: 793–802

  • Grozinger CM, Hassig CA, Schreiber SL . 1999 Proc. Natl. Acad. Sci. USA 96: 4869–4873

  • Fears S, Mathieu C, Zeleznik-Le N, Huang S, Rowley JD, Nucifora G . 1996 Proc. Natl. Acad. Sci. USA 93: 1642–1647

  • Hast R, Nilsson C, Widell S, Ost A . 1989 Leuk. Res. 13: 173–178

  • Huang S . 1994 Cell 78: 9–

  • Izutsu K, Kurokawa M, Imai Y, Maki K, Mitani K, Hirai H . 2001 Blood 97: 2815–2822

  • Keller SA, Mao Y, Struffi P, Margulies C, Yurk CE, Anderson AR, Amey RI, Moore S, Ebels JM, Foley K, Corado M, Arnosti DN . 2000 Mol. Cell Biol. 20: 7247–7258

  • Kreider BL, Orkin SH, Ihle JN . 1993 Proc. Natl. Acad. Sci. USA 90: 6454–6459

  • Langenhuijsen MM . 1984 Br. J. Haematol. 58: 227–230

  • Lavau C, Luo RT, Du C, Thirman MJ . 2000 Proc. Natl. Acad. Sci. USA 97: 10984–10989

  • Lin RJ, Evans RM . 2000 Mol. Cell 5: 821–830

  • Mikhail FM, Serry KA, Hatem N, Mourad ZI, Farawela HM, El-Kaffash D, Coignet L, Nucifora G . 2002 Cancer Genet. Cytogenet in press

  • Minucci S, Maccarana M, Cioce M, De Luca P, Gelmetti V, Segalla S, Di Croce L, Giavara S, Matteucci C, Gobbi A, Bianchini A, Colombo E, Schiavoni I, Badaracco G, Hu X, Lazar MA, Landsberger N, Nervi C, Pelicci PG . 2000 Mol. Cell 5: 811–820

  • Nibu Y, Zhang H, Bajor E, Barolo S, Small S, Levine M . 1998 EMBO J. 17: 7009–7020

  • Nucifora G, Birn DJ, Espinosa 3rd R, Erickson P, LeBeau MM, Roulston D, McKeithan TW, Drabkin H, Rowley JD . 1993 Blood 81: 2728–2734

  • Nucifora G, Begy KR, Kobayashi H, Roulston D, Claxton D, Pedersen-Bjergaard J, Parganas E, Ihle JN, Rowley JD . 1994 Proc. Natl. Acad. Sci. USA 91: 4004–4008

  • Ogawa E, Inuzuka M, Maruyama M, Satake M, Naito-Fujimoto M, Ito Y, Shigesada K . 1993a Virology 194: 314–331

  • Ogawa E, Maruyama M, Kagoshima H, Inuzuka M, Lu J, Satake M, Shigesada K, Ito Y . 1993b Proc. Natl. Acad. Sci. USA 90: 6859–6863

  • Okuda T, van Deursen J, Hiebert SW, Grosveld G, Downing JR . 1996 Cell 84: 321–330

  • Palmer S, Brouillet JP, Kilbey A, Fulton R, Walker M, Crossley M, Bartholomew C . 2001 J. Biol. Chem. 276: 25834–25840

  • Postigo AA, Dean DC . 1999 Proc. Natl. Acad. Sci. USA 96: 6683–6688

  • Rhoades K, Hetherington CJ, Rowley JD, Hiebert SW, Nucifora G, Tenen DG, Zhang DE . 1996 Proc. Natl. Acad. Sci. USA 93: 11895–11900

  • Roulston D, Espinosa 3rd R, Nucifora G, Larson RA, Le Beau MM, Rowley JD . 1998 Blood 92: 2879–2885

  • Rubin CM, Larson RA, Anastasi J, Winter JN, Thangavelu M, Vardiman JW, Rowley JD, Le Beau MM . 1990 Blood 76: 2594–2598

  • Sambrook J, Fritsch EF, Maniatis T . 1989 Molecular cloning: a laboratory manual 2nd edn Cold Spring Harbor Laboratory: Cold Spring Harbor NY

    Google Scholar 

  • Schaeper U, Boyd JM, Verma S, Uhlmann E, Subramanian T, Chinnadurai G . 1995 Proc. Natl. Acad. Sci. USA 92: 10467–10471

  • Sewalt R, Gunster M, Vlag J, Satijn D, Otte A . 1999 Mol. Cell Biol. 19: 777–787

  • Soderholm J, Kobayashi H, Mathieu C, Rowley JD, Nucifora G . 1997 Leukemia 11: 352–358

  • Sood R, Talwar-Trikha A, Chakrabarti SR, Nucifora G . 1999 Leukemia 13: 348–357

  • Sundqvist A, Sollerbrant K, Svensson C . 1998 FEBS Lett. 429: 183–188

  • Turner J, Crossley M . 1998 EMBO J. 17: 5129–5140

  • Turner J, Crossley M . 2001 BioEssays 23: 683–690

  • Wang Q, Stacy T, Binder M, Marin-Padilla M, Sharpe AH, Speck NA . 1996 Proc. Natl. Acad. Sci. USA 93: 3444–3449

  • Zent C, Kim N, Hiebert S, Zhang DE, Tenen DG, Rowley JD, Nucifora G . 1996 Curr. Top. Microbiol. Immunol. 211: 243–252

  • Zent C, Rowley JD, Nucifora G . 1997 Leukemia 11: Suppl 3 273–278

  • Zhang DE, Hetherington CJ, Meyers S, Rhoades K, Larson CJ, Chen HM, Hiebert SW, Tenen DG . 1996 Mol. Cell Biol. 16: 1231–1240

Download references

Acknowledgements

We thank Ms S Sitailo for technical assistance. We thank Dr R Baer (Columbia University) for the CtBP1-Flag-pCMV plasmid and Dr SL Schreiber (Harvard University) for the HDACs-Flag-pBJ5.1 plasmids. This work was supported by NIH-NCI grants CA67189 and CA72675 (G Nucifora), and by a translation research award from the Leukemia and Lymphoma Society (G Nucifora). G Nucifora is a Scholar of the Leukemia and Lymphoma Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppina Nucifora.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Senyuk, V., Chakraborty, S., Mikhail, F. et al. The leukemia-associated transcription repressor AML1/MDS1/EVI1 requires CtBP to induce abnormal growth and differentiation of murine hematopoietic cells. Oncogene 21, 3232–3240 (2002). https://doi.org/10.1038/sj.onc.1205436

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1205436

Keywords

This article is cited by

Search

Quick links