Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

p53 and recombination intermediates: role of tetramerization at DNA junctions in complex formation and exonucleolytic degradation

A Corrigendum to this article was published on 09 May 2003

Abstract

Heteroduplex joints represent intermediates of Rad51-dependent recombination processes, which are recognized by p53 with extremely high affinities, in a manner independent of the DNA sequence content. To determine the structural elements required for complex formation, we monitored DNA-binding by protection against restriction endonuclease cleavage. We show that wild-type (wt) p53 interacts with heteroduplex joints in the proximity of the flexible junction. Association of p53 within this junction region was also observed with preformed Rad51-heteroduplex complexes, whereas SSB counteracted p53 binding. At a distance of 31 bp from the junction p53 established very few contacts with the heteroduplex, despite the presence of an A–G mismatch. Consistently, p53-dependent exonucleolytic degradation decreased when we raised the distance between the junction and the heteroduplex terminus by 27 bp. Different from the cancer-related mutant p53(273H), which did not recognize the junction, tetramerization defective p53-1262 was protection competent but displayed reduced complex stability in gel shifts. Moreover, p53-1262 performed exonucleolytic activities towards ssDNA like wtp53, but reduced degradation of heteroduplex joints. These results suggest that during recombination wild-type p53, as a tetramer, stably binds to strand transfer regions, enabling the protein to exonucleolytically correct heteroduplex intermediates early after strand invasion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Ahrendt SA, Decker PA, Doffek K, Wang B, Xu L, Demeure MJ, Jen J, Sidransky D . 2000 Cancer Res. 60: 2488–2491

  • Albrechtsen N, Dornreiter I, Grosse F, Kim E, Wiesmüller L, Deppert W . 1999 Oncogene 8: 7706–7717

  • Atz J, Wagner P, Roemer K . 2000 J. Cell. Biochem. 76: 572–584

  • Bakhanashvili M . 2001 Eur. J. Biochem. 268: 2047–2054

  • Balagurumoorthy P, Sakamoto H, Lewis MS, Zambrano N, Clore GM, Gronenborn AM, Appella E, Harrington RE . 1995 Proc. Natl. Acad. Sci. USA 92: 8591–8595

  • Baumann P, West SC . 1998 Trends Biochem. Sci. 23: 247–251

  • Bertrand P, Rouillard D, Boulet A, Levalois C, Soussi T, Lopez BS . 1997 Oncogene 14: 1117–1122

  • Blander G, Kipnis J, Fernando J, Leal JFM, Yu C-E, Schellenberg GD, Oren M . 1999 J. Biol. Chem. 274: 29463–29469

  • Chene P, Bechter E . 1999a J. Mol. Biol. 288: 891–897

  • Chene P, Bechter E . 1999b J. Mol. Biol. 286: 1269–1274

  • Cleaver E, Afzal V, Feeney L, McDowell M, Sadinski W, Volpe JP, Busch DB, Coleman DM, Ziffer DW, Yu Y, Nagasawa H, Little JB . 1999 Cancer Res. 59: 1102–1108

  • Cho Y, Gorina S, Jeffrey PD, Pavletich NP . 1994 Science 265: 346–355

  • Constantinou A, Tarsounas M, Karow JK, Brosh RM, Bohr VA, Hickson ID, West SC . 2000 EMBO Rep. 1: 80–84

  • Dasika GK, Lin S-C, Zhao S, Sung P, Tomkinson A, Lee EY-H . 1999 Oncogene 18: 7883–7899

  • Dudenhöffer C, Rohaly G, Will K, Deppert W, Wiesmüller L . 1998 Mol. Cell. Biol. 18: 5332–5342

  • Dudenhöffer C, Kurth M, Janus F, Deppert W, Wiesmüller L . 1999 Oncogene 18: 5773–5784

  • Flores-Rozas H, Kolodner RD . 2000 Trends Biochem. Sci. 25: 196–200

  • Gebow D, Miselis N, Liber HJ . 2000 Mol. Cell. Biol. 20: 4028–4035

  • Haber J . 1999 Trends Biol. Sci. 24: 271–275

  • Honma M, Hayashi M, Sofuni T . 1997 Mutat. Res. 374: 89–98

  • Huang P . 1998 Oncogene 17: 261–270

  • Ishizaki K, Ejima Y, Matsunaga T, Hara R, Sakamoto A, Ikenaga M, Ikawa Y, Aizawa S . 1994 Int. J. Cancer 58: 254–257

  • Janus F, Albrechtsen N, Knippschild U, Wiesmüller L, Grosse F, Deppert W . 1999 Mol. Cell. Biol. 19: 2155–2168

  • Jayaraman L, Prives C . 1995 Cell 81: 1021–1029

  • Jean D, Gendron D, Delbecchi L, Bourgaux P . 1997 Nucl. Acids Res. 25: 4004–4012

  • Kühn C, Müller F, Melle C, Nasheuer HP, Janus F, Deppert W, Grosse F . 1998 Oncogene 18: 769–774

  • Lane DP . 1992 Nature 358: 15–16

  • Lee S, Elenbaas B, Levine A, Griffith J . 1995 Cell 81: 1013–1020

  • Lee S, Elenbaas B, Levine AJ, Griffith J . 1997 J. Biol. Chem. 272: 7532–7539

  • Levine A . 1997 Cell 88: 323–331

  • Mekeel KL, Tang W, Kachnic LA, Luo C-M, DeFrank JS, Powell SN . 1997 Oncogene 14: 1847–1857

  • Meyn MS, Strasfeld L, Allen C . 1994 Int. J. Radiat. Biol. 66: S141–S149

  • Mummenbrauer T, Janus F, Müller B, Wiesmüller L, Deppert W, Große F . 1996 Cell 85: 1089–1099

  • Nagaich AK, Zhurkin VB, Durell SR, Jernigan RL, Appella E, Harrington RE . 1999 Proc. Natl. Acad. Sci. USA 96: 1875–1880

  • Nagaich AK, Zhurkin VB, Sakamoto H, Gorin AA, Clore GM, Gronenborn AM, Appella E, Harrington RE . 1997a J. Biol. Chem. 272: 14830–14841

  • Nagaich AK, Appella E, Harrington RE . 1997b J. Biol. Chem. 272: 14842–14849

  • Palecek E, Vlk D, Stankova V, Brazda V, Vojtesek B, Hupp TR, Schaper A, Jovin TM . 1997 Oncogene 15: 2201–2209

  • Pham P, Bertram JG, O'Donnell M, Woodgate R, Goodman M . 2001 Nature 409: 366–370

  • Saintigny Y, Rouillard D, Chaput B, Soussi T, Lopez BS . 1999 Oncogene 18: 3553–3565

  • Schwartz JL, Russell KJ . 1999 Radiat. Res. 151: 385–390

  • Shakked Z, Yavnilovitch M, Gilboa AJ, Rotter V, Haran TE . 2000 J. Biomol. Struct. Dyn. Mendal Brno 2000 abstract

  • Skalski V, Lin Z-Y, Choi BY, Brown KR . 2000 Oncogene 19: 3321–3329

  • Stenger JE, Tegtmeyer P, Mayr G, Reed M, Wang Y, Wang P, Hough PV, Mastrangelo IA . 1994 EMBO J. 13: 6011–6020

  • Süsse S, Janz C, Janus F, Deppert W, Wiesmüller L . 2000 Oncogene 19: 4500–4512

  • Tarunina M, Grimaldi M, Ruaro E, Pavlenko M, Schneider C, Jenkins JR . 1996 Oncogene 13: 589–598

  • Tokino T, Thiagalingam S, El-Deiry WS, Waldman T, Kinzler KW, Vogelstein B . 1994 Hum. Mol. Genet. 3: 1537–1542

  • Wiesmüller L, Cammenga J, Deppert WW . 1996 J. Virol. 70: 737–744

  • Willers H, McCarthy EE, Wu B, Wunsch H, Tang W, Taghian DG, Xia F, Powell SN . 2000 Oncogene 19: 632–639

  • Wold MS . 1997 Annu. Rev. Biochem. 66: 61–92

  • Xia F, Amundson SA, Nickoloff JA, Liber HL . 1994 Mol. Cell. Biol. 14: 5850–5857

  • Zotchev SB, Protopopova M, Selivanova G . 2000 Nucleic Acids Res. 28: 4005–4012

Download references

Acknowledgements

Our special thanks go to Prof Dr John Jenkins, Marie Curie Research Institute, Oxted, Surrey, UK, for the generous gift of the baculoviral expression plasmid for p53-1262. We are grateful to Anke Osterloh and Marco Littek for competent experimental assistance. This work was supported by the Deutsche Forschungsgemeinschaft, grants Wi 1376/1-4 and -5 and grant 10-1281-Wi I by the Deutsche Krebshilfe, the Dr Mildred Scheel Stiftung. S. Süsse was supported by the FAZIT-Stiftung, Frankfurt a.M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisa Wiesmüller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Janz, C., Süsse, S. & Wiesmüller, L. p53 and recombination intermediates: role of tetramerization at DNA junctions in complex formation and exonucleolytic degradation. Oncogene 21, 2130–2140 (2002). https://doi.org/10.1038/sj.onc.1205292

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1205292

Keywords

This article is cited by

Search

Quick links