Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Consequences of altered TGF-β expression and responsiveness in breast cancer: evidence for autocrine and paracrine effects

Abstract

To characterize the impact of increased production of TGF-β in a xenograft model of human breast cancer, TGF-β-responsive MDA-231 cells were genetically modified by stable transfection so as to increase their production of active TGF-β1. Compared with control cells, cells that produced increased amounts of TGF-β proliferated in vitro more slowly. In vivo, however, tumors derived from these cells exhibited increased proliferation and grew at an accelerated pace. To evaluate the role of autocrine TGF-β signaling, cells were also transfected with a dominant-negative truncated type II TGF-β receptor (TβRII). Disruption of autocrine TGF-β signaling in the TGF-β-overexpressing cells reduced their in vivo growth rate. Co-inoculation of Matrigel with the TGF-β-overexpressing cells expressing the truncated TβRII compensated for their diminished in vivo growth capacity, compared with the TGF-β-overexpressing cells with an intact autocrine loop. Tissue invasion by the tumor was a distinctive feature of the TGF-β-overexpressing cells, whether or not the autocrine loop was intact. Furthermore, tumors derived from TGF-β-overexpressing cells, irrespective of the status of the autocrine TGF-β-signaling pathway, had a higher incidence of lung metastasis. Consistent with the suggestion that TGF-β's enhancement of invasion and metastasis is paracrine-based, we observed no significant differences among the cell clones in an in vitro invasion assay. Thus, in this experimental model system in vitro assays of cell proliferation and invasion do not accurately reflect in vivo observations, perhaps due to autocrine and paracrine effects of TGF-β that influence the important in vivo-based phenomena of tumor growth, invasion, and metastasis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Abe M, Harpel JG, Metz CN, Nunes I, Loskutoff D, Rifkin DB . 1994 Anal. Biochem. 216: 276–284

  • Anbazhagan R, Bornman DM, Johnston JC, Westra WH, Gabrielson E . 1999 Cancer Res. 59: 3363–3364

  • Arrick BA, Lopez AR, Elfman F, Ebner R, Damsky CH, Derynck R . 1992 J. Cell Biol. 118: 715–726

  • Arrick BA, Derynck R . 1996 The biological role of transforming growth factor beta in cancer development In: Molecular Endocrinology of Cancer Waxman J (ed) Cambridge University Press: New York pp 51–78

    Google Scholar 

  • Arteaga CL, Hurd SD, Winnier AR, Johnson MD, Fendly BM, Forbes JT . 1993 J. Clin. Invest. 92: 2569–2576

  • Arteaga CL, Koli KM, Dugger TC, Clarke R . 1999 J. Natl. Cancer Inst. 91: 46–53

  • Ausubel FM, Brent R, Kingston RE, Moore DD, Siedman JG, Smith JA, Struhl K . 1987 Current protocols in molecular biology John Wiley & Sons: New York

    Google Scholar 

  • Bandyopadhyay A, Zhu Y, Cibull ML, Bao LW, Chen CG, Sun LZ . 1999 Cancer Res. 59: 5041–5046

  • Bao L, Matsumura Y, Baban Y, Tarin D . 1994 Br. J. Cancer 70: 228–232

  • Benbow U, Schoenermark MP, Orndorff KA, Givan AL, Brinckerhoff CE . 1999 Clin. Exp. Metastasis 17: 231–238

  • Brand T, Schneider MD . 1995 J. Biol. Chem. 270: 8274–8284

  • Brunner AM, Marquardt H, Malacko AR, Lioubin MN, Purchio AF . 1989 J. Biol. Chem. 264: 13660–13664

  • Chang H-L, Gillett N, Figari I, Lopez AR, Palladino MA, Derynck R . 1993 Cancer Res. 53: 4391–4398

  • Chen TP, Carter D, Garrigue-Antar L, Reiss M . 1998 Cancer Res. 58: 4805–4810

  • Dalal BI, Keown PA, Greenberg AH . 1993 Am. J. Pathol. 143: 381–389

  • Friedman E, Gold LI, Klimstra D, Zeng Z, Winawer S, Cohen A . 1995 Cancer Epidemiol. Biomarkers Prev. 4: 549–554

  • Ghattas IR, Sanes JR, Majors JE . 1991 Mol. Cell. Biol. 11: 5848–5859

  • Gobbi H, Arteaga CL, Jensen RA, Simpson JF, Dupont WD, Olson SJ, Schuyler PA, Plummer Jr WD, Page D . 2000 Histopathology 36: 168–177

  • Gorsch SM, Memoli VA, Stukel TA, Gold LI, Arrick BA . 1992 Cancer Res. 52: 6949–6952

  • Hsu S, Huang F, Hafez M, Winawer S, Friedman E . 1994 Cell Growth Differ. 5: 267–275

  • Inge TH, Hoover SK, Susskind BM, Barrett SK, Bear HD . 1992 Cancer Res. 52: 1386–1392

  • Keeton MR, Curriden SA, Van Zonneveld A-J, Loskutoff D . 1991 J. Biol. Chem. 266: 23048–23052

  • Kinugasa S, Abe S, Tachibana M, Hishikawa Y, Yoshimura H, Monden N, Dhar DK, Nagasue N, Nagaoka S . 1998 Oncology 55: 582–587

  • Koli KM, Arteaga CL . 1996 J. Mammary Gland Biol. Neoplasia 1: 373–380

  • Leone A, Flatow U, King CR, Sandeen MA, Margulies IMK, Liotta LA, Steeg PS . 1991 Cell 65: 25–35

  • Lin HY, Wang X-F, Ng-Eaton E, Weinberg RA, Lodish HF . 1992 Cell 68: 775–785

  • Lu ML, Arrick BA . 2000 Oncogene 19: 6351–6360

  • Maehara Y, Kakeji Y, Kabashima A, Emi Y, Watanabe A, Akazawa K, Baba H, Kohnoe S, Sugimachi K . 1999 J. Clin. Oncol. 17: 607–614

  • Matsuzaki K, Date M, Furukawa F, Tahashi Y, Matsushita M, Sakitani K, Yamashiki N, Seki T, Saito H, Nishizawa M, Fujisawa J, Inoue K . 2000 Cancer Res. 60: 1394–1402

  • Matthews E, Yang T, Janulis L, Goodwin S, Kundu SD, Karpus WJ, Lee C . 2000 Br. J. Cancer 83: 519–525

  • McEarchern JA, Kobie JJ, Mack V, Wu RS, Meade-Tollin L, Arteaga CL, Dumont N, Besselsen D, Seftor E, Hendrix MJC, Katsanis E, Akporiaye ET . 2001 Int. J. Cancer 91: 76–82

  • Mullen P, Ritchie A, Langdon SP, Miller WR . 1996 Int. J. Cancer 67: 816–820

  • Nguyen AV, Pollard JW . 2000 Development 127: 3107–3118

  • Noel A, De Pauw-Gillet MC, Purnell G, Nusgens B, Lapiere CM, Foidart JM . 1993 Br. J. Cancer 68: 909–915

  • Oft M, Heider KH, Beug H . 1998 Curr. Biol. 8: 1243–1252

  • Ohmori T, Yang JL, Price JO, Arteaga CL . 1998 Exp. Cell Res. 245: 350–359

  • Pierce Jr DF, Gorska AE, Chytil A, Meise KS, Page DL, Coffey Jr RJ, Moses HL . 1995 Proc. Natl. Acad. Sci. USA 92: 4254–4258

  • Reiss M, Barcellos-Hoff MH . 1997 Breast Cancer Res. Treat. 45: 81–95

  • Roberts AB, Sporn MB, Assoian RK, Smith JM, Roche NS, Wakefield LM, Heine UI, Liotta LA, Falanga V, Kehrl JH, Fauci AS . 1986 Proc. Natl. Acad. Sci. USA 83: 4167–4171

  • Saito H, Tsujitani S, Oka S, Kondo A, Ikeguchi M, Maeta M, Kaibara N . 1999 Cancer 86: 1455–1462

  • Silberstein GB, Daniel CW . 1987 Science 237: 291–293

  • Steiner MS, Barrack ER . 1992 Mol. Endo. 6: 15–25

  • Sun L, Wu G, Willson JKV, Zborowska E, Yang J, Rajkarunanayake I, Wang J, Gentry LE, Wang X-F, Brattain MG . 1994 J. Biol. Chem. 269: 26449–26455

  • Takanami I, Imamura T, Hashizume T, Kikuchi K, Yamamoto Y, Kodaira S . 1994 J. Clin. Pathol. 47: 1098–1100

  • Tobin SW, Brown MK, Douville K, Payne DC, Eastman A, Arrick BA . 2001 Cell Growth Differ. 12: 109–117

  • Torre-Amione G, Beauchamp RD, Koeppen H, Park BH, Schreiber H, Moses HL, Rowley DA . 1990 Proc. Natl. Acad. Sci. USA 87: 1486–1490

  • Ueki N, Ohkawa T, Yokoyama Y, Maeda J, Kawai Y, Ikeda T, Amuro Y, Hada T, Higashino K . 1993 Japan. J. Cancer Res. 84: 589–593

  • Van Obberghen-Schilling E, Roche NS, Flanders KC, Sporn MB, Roberts AB . 1988 J. Biol. Chem. 263: 7741–7746

  • Van Slooten H-J, Bonsing BA, Hiller AJ, Colbern GT, Van Dierendonck JH, Cornelisse CJ, Smith HS . 1995 Br. J. Cancer 72: 22–30

  • Vukicevic S, Kleinman HK, Luyten FP, Roberts AB, Roche NS, Reddi AH . 1992 Exp. Cell Res. 202: 1–8

  • Wang D, Zhou G, Birkenmeier TM, Gong J, Sun L, Brattain MG . 1995 J. Biol. Chem. 270: 14154–14159

  • Welch DR, Fabra A, Nakajima M . 1990 Proc. Natl. Acad. Sci. USA 87: 7678–7682

  • Wikström P, Stattin P, Franck-Lissbrant I, Damber JE, Bergh A . 1998 Prostate 37: 19–29

  • Ye SC, Foster JM, Li WH, Liang JR, Zborowska E, Venkateswarlu S, Gong JG, Brattain MG, Willson JKV . 1999 Cancer Res. 59: 4725–4731

  • Yin JJ, Selander K, Chirgwin JM, Dallas M, Grubbs BG, Wieser R, Massagué J, Mundy GR, Guise TA . 1999 J. Clin. Invest. 103: 197–206

Download references

Acknowledgements

We thank Dr Harvey Lodish and colleagues for the TβR-II cDNA clone H2-3FF, Dr John E Majors for the pCEN/MER plasmid, and Dr Dan Rifkin for the p800LUC plasmid and the stably transfected mink lung epithelial cells. Maudine Waterman provided expert assistance with the immunohistochemical analysis. This research was supported by grants CA60928 from the National Cancer Institute and DAMD17-94-J-4130 from the Department of Defense Breast Cancer Research Program. Dr Tobin was supported by National Cancer Institute Training Grant CA09658. This publication is dedicated to the memory of Lisa Deslandes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bradley A Arrick.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tobin, S., Douville, K., Benbow, U. et al. Consequences of altered TGF-β expression and responsiveness in breast cancer: evidence for autocrine and paracrine effects. Oncogene 21, 108–118 (2002). https://doi.org/10.1038/sj.onc.1205026

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1205026

Keywords

This article is cited by

Search

Quick links