Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

TOJ3, a target of the v-Jun transcription factor, encodes a protein with transforming activity related to human microspherule protein 1 (MCRS1)

Abstract

Using the established quail cell line Q/d3 conditionally transformed by the v-jun oncogene, cDNA clones (TOJ2, TOJ3, TOJ5, TOJ6) were isolated by representational difference analysis (RDA) that correspond to genes which were induced immediately upon conditional activation of v-jun. One of these genes, TOJ3, is immediately and specifically activated after doxycycline-mediated v-jun induction, with kinetics similar to the induction of well characterized direct AP-1 target genes. TOJ3 is neither activated upon conditional activation of v-myc, nor in cells or cell lines non-conditionally transformed by oncogenes other than v-jun. Sequence analysis revealed that the TOJ3-specific cDNA encodes a 530-amino acid protein with significant sequence similarities to the murine or human microspherule protein 1 (MCRS1, MSP58), a nucleolar protein that directly interacts with the ICP22 regulatory protein from herpes simplex virus 1 or with p120, a proliferation-related protein expressed at high levels in most human malignant tumor cells. Similar to its mammalian counterparts, the TOJ3 protein contains a bipartite nuclear localization motif and a forkhead associated domain (FHA). Using polyclonal antibodies directed against a recombinant amino-terminal TOJ3 protein segment, the activation of TOJ3 in jun-transformed fibroblasts was also demonstrated at the protein level by specific detection of a polypeptide with an apparent Mr of 65 000. Retroviral expression of the TOJ3 gene in quail or chicken embryo fibroblasts induces anchorage-independent growth, indicating that the immediate activation of TOJ3 in fibroblasts transformed by the v-jun oncogene contributes to cell transformation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ . 1997 Nucleic Acids Res. 25: 3389–3402

  • Angel P, Szabowski A, Schorpp-Kistner . 2001 Oncogene 20: 2413–2423

  • Apel I, Yu CL, Wang T, Dobry C, Van Antwerp ME, Jove R, Prochownik EV . 1992 Mol. Cell. Biol. 12: 3356–3364

  • Bader AG, Hartl M, Bister K . 2000 Virology 270: 98–110

  • Bengal E, Ransone L, Scharfmann R, Dwarki VJ, Tapscott SJ, Weintraub H, Verma IM . 1992 Cell 68: 507–519

  • Bister K, Hayman MJ, Vogt PK . 1977 Virology 82: 431–448

  • Bister K, Trachmann C, Jansen HW, Schroeer B, Patschinsky T . 1987 Oncogene 1: 97–109

  • Bos TJ, Monteclaro FS, Mitsunobu F, Ball AR Jr, Chang CHW, Nishimura T, Vogt PK . 1990 Genes Dev. 4: 1677–1687

  • Boyd KE, Farnham PJ . 1999 Proc. Soc. Exp. Biol. Med. 222: 9–28

  • Bruni R, Roizman B . 1998 J. Virol. 72: 8525–8531

  • Cohen SB, Waha A, Gelman IH, Vogt PK . 2001 Oncogene 20: 141–146

  • Coller HA, Grandori C, Tamayo P, Colbert T, Lander ES, Eisenman RN, Golub TR . 2000 Proc. Natl. Acad. Sci. USA 97: 3260–3265

  • Cordero-Erausquin M, Marubio LM, Klinik R, Changeux JP . 2000 Trends Pharmacol. Sci. 21: 211–217

  • Curran T, Vogt PK . 1991 Transcriptional Regulation. McKnight SL and Yamamoto K (eds) Cold Spring Harbor Laboratory Press: Cold Spring Harbor pp. 797–831

  • Dang CV . 1999 Mol. Cell. Biol. 19: 1–11

  • Dingwall C, Laskey RA . 1991 Trends Biochem. Sci. 16: 478–481

  • Dingwall C, Laskey RA . 1998 Curr Biol. 8: R922–R924

  • Durocher D, Henckel J, Fersht AR, Jackson SP . 1999 Mol. Cell 4: 387–394

  • Edwards JB, Delort J, Mallet J . 1991 Nucleic Acids Res. 19: 5227–5232

  • Freeman JW, Busch RK, Gyorkey F, Gyorkey P, Ross BE, Busch H . 1988 Cancer Res. 48: 1244–1251

  • Fu S, Bottoli I, Goller M, Vogt PK . 1999 Proc. Natl. Acad. Sci. USA 96: 5716–5721

  • Fu SI, Waha A, Vogt PK . 2000 Oncogene 19: 3537–3545

  • Goller ME, Iacovoni JS, Vogt PK, Kruse U . 1998 Oncogene 16: 2945–2948

  • Grossi M, Calconi A, Tato F . 1991 Oncogene 6: 1767–1773

  • Hadman M, Gabos L, Loo M, Sehgal A, Bos TJ . 1996 Oncogene 12: 135–142

  • Hadman M, Lin W, Bush L, Bos TJ . 1998 Oncogene 16: 655–660

  • Hartl M, Bister K . 1995 Proc. Natl. Acad. Sci. USA 92: 11731–11735

  • Hartl M, Bister K . 1998 Oncogene 17: 2901–2913

  • Hartl M, Vogt PK, Bister K . 1995 Virology 207: 321–326

  • Hofmann, K, Bucher, P . 1995 Trends Biochem. Sci. 20: 347–349

  • Hozak P . 1995 Exp. Cell Res. 216: 285–289

  • Hubank M, Schatz DG . 1994 Nucleic Acids Res. 22: 5640–5648

  • Hughes SH, Greenhouse JJ, Petropolous CJ, Sutrave P . 1987 J. Virol. 61: 3004–3012

  • Jansen HW, Patschinsky T, Bister K . 1983 J. Virol. 48: 61–73

  • Jochum W, Passegué E, Wagner EF . 2001 Oncogene 20: 2401–2412

  • Johnson R, Spiegelman B, Hanahan D, Wisdom R . 1996 Mol. Cell. Biol. 16: 4504–4511

  • Jurdic P, Treilleux I, Vandel L, Tabone E, Huguier S, Sergeant A, Castellazzi M . 1995 Oncogene 11: 1699–1709

  • Karin M, Liu ZG, Zandi E . 1997 Curr. Opin. Cell Biol. 9: 240–246

  • Kruse U, Iacovoni JS, Goller ME, Vogt PK . 1997 Proc. Natl. Acad. Sci. USA 94: 12396–12400

  • Lamph WW, Wamsley P, Sassone-Corsi P, Verma IM . 1988 Nature 334: 629–631

  • Li J, Lee GI, Van Doren SR, Walker JC . 2000 J. Cell Sci. 113: 4143–4149

  • Maki Y, Bos TJ, Davis C, Starbuck M, Vogt PK . 1987 Proc. Natl. Acad. Sci. USA 84: 2848–2852

  • Mann B, Gelos M, Siedow A, Hanski ML, Gratchev A, Ilyas M, Bodmer WF, Moyer MP, Riecken EO, Buhr HJ, Hanski C . 1999 Proc. Natl. Acad. Sci. USA 96: 1603–1608

  • Mettouchi A, Cabon F, Montreau N, Vernier P, Mercier G, Blangy D, Tricoire H, Vigier P, Binétruy B . 1994 EMBO J. 13: 5668–5678

  • Mölders H, Jenuwein T, Adamkiewicz J, Müller R . 1987 Oncogene 1: 377–385

  • Moscovici C, Moscovici MG, Jimenez H, Lai MMC, Hayman MJ, Vogt PK . 1977 Cell 11: 95–103

  • Nishimura T, Vogt PK . 1988 Oncogene 3: 659–663

  • Nishizawa M, Goto N, Kawai S . 1987 J. Virol. 61: 3733–3740

  • Oberst C, Hartl M, Weiskirchen R, Bister K . 1999 Virology 253: 193–207

  • Ozanne BW, McGarry L, Spence HJ, Johnston I, Winnie J, Meagher L, Stapleton G . 2000 Eur. J. Cancer 36: 1640–1648

  • Ren Y, Busch RK, Perlaky L, Busch H . 1998 Eur. J. Biochem. 253: 734–742

  • Rinehart-Kim J, Johnston M, Birrer M, Bos T . 2000 Int. J. Cancer 88: 180–190

  • Saez E, Rutberg SE, Mueller E, Oppenheim H, Smoluk J, Yuspa SH, Spiegelman BM . 1995 Cell 82: 721–732

  • Schoepfer R, Conroy WG, Whiting P, Gore M,, Lindstrom J . 1990 Neuron 1: 35–48

  • Shaulian E, Karin M . 2001 Oncogene 20: 2390–2400

  • Su HY, Bos TJ, Monteclaro FS, Vogt PK . 1991 Oncogene 6: 1759–1766

  • Suzuki T, Murakami M, Onai N, Fukuda E, Hashimoto Y, Sonobe MH, Kameda T, Ichinose M, Miki K, Iba H . 1994 J. Virol. 68: 3527–3535

  • Tikhonenko AT, Linial ML . 1992 J. Virol. 66: 946–955

  • Van Dam H, Castellazzi M . 2001 Oncogene 20: 2453–2464

  • Vaughan KT, Weber FE, Einheber S, Fischman DA . 1993 J. Biol. Chem. 268: 3670–3676

  • Vial E, Castellazzi M . 2000 Oncogene 19: 1772–1782

  • Vogt PK . 2001 Oncogene 20: 2365–2377

  • Vogt PK, Aoki M, Bottoli I, Chang HW, Fu S, Hecht A, Iacovoni JS, Jiang BH, Kruse U . 1999 Cell Growth Differ. 10: 777–784

  • Vogt PK, Bos TJ . 1990 Adv. Cancer Res. 55: 1–35

  • Wang P, Byeon IJ, Liao H, Beebe KD, Yongkiettrakul S, Pei D, Tsai MD . 2000 J. Mol. Biol. 302: 927–940

  • Weiskirchen R, Siemeister G, Hartl M, Bister K . 1993 Gene 128: 269–272

  • Wisdom R . 1999 Exp. Cell Res. 253: 180–185

  • Wong WY, Håvarstein LS, Morgan IM, Vogt PK . 1992 Oncogene 7: 2077–2080

  • Young MR, Li JJ, Rincón M, Flavell RA, Sathyanarayana BK, Hunziker R, Colburn N . 1999 Proc. Natl. Acad. Sci. USA 96: 9827–9832

Download references

Acknowledgements

We are grateful to Bernard Roizman (The University of Chicago, USA) for the p78 specific antiserum and to Friedrich Lottspeich (Max-Planck-Institute of Biochemistry, Martinsried, Germany) for mass spectrometry. K Bister thanks Peter K Vogt for support during a sabbatical stay at the Scripps Research Institute, La Jolla, CA, USA. We thank Doris Bratschun and Martina Texler for excellent technical assistance. This work was supported by grants SFB-F002/211 from the Austrian Science Foundation (FWF) and 7357 from the Austrian National Bank.

Accession numbers

The sequences reported in this paper have been deposited in the GenBank database, www.ncbi.nlm.nih.gov (accession nos. AY007310, AF390033, AF390034, AF390035).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Hartl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bader, A., Schneider, M., Bister, K. et al. TOJ3, a target of the v-Jun transcription factor, encodes a protein with transforming activity related to human microspherule protein 1 (MCRS1). Oncogene 20, 7524–7535 (2001). https://doi.org/10.1038/sj.onc.1204938

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1204938

Keywords

This article is cited by

Search

Quick links