Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

VEGF165 requires extracellular matrix components to induce mitogenic effects and migratory response in breast cancer cells

Abstract

The expression of VEGF and the relapse-free survival rate of breast cancer patients are inversely related. While VEGF induces the proliferation and migration of vascular endothelial cells, its function in breast cancer cells is not well studied. We reported previously that fibronectin increased VEGF-dependent migration in breast cancer cells. Since VEGF has an extracellular matrix (ECM)-binding domain and possesses binding affinity for heparin, we sought to determine the effects of VEGF in breast cancer cells and the role of heparin and/or fibronectin in VEGF-induced signaling. Cells grown on plastic were compared to those grown on fibronectin or to those grown on plastic in the presence of heparin, and analysed for intracellular signaling, proliferation and migration in response to VEGF165. Both heparin and fibronectin enhanced the binding of VEGF to T47D cells. After treatment with VEGF, [3H]thymidine incorporation, c-fos induction, and the number of migrating cells were significantly higher (∼twofold) in cells grown on fibronectin or in cells grown on plastic in the presence of heparin when compared to those grown on plastic only. Likewise, tyrosine phosphorylation of VEGF receptors, MAPK activity and PI3-kinase activity were all several-fold higher in cells seeded on fibronectin or in the presence of heparin as compared to cells exposed to VEGF alone. VEGF-dependent c-fos induction was found to be regulated through a MAPK-dependent, but PI3-kinase-independent pathway. In contrast, the migration of T47D cells in response to VEGF, in the presence of ECM, was regulated through PI3-kinase. Therefore, VEGF requires ECM components to induce a mitogenic response and cell migration in T47D breast cancer cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Abbreviations

VEGF:

vascular endothelial growth factor

HRG:

heregulin

MTR:

matrigel

ECM:

extracellular matrix

GAG:

glycosaminoglycan

PI3K:

phosphatidylinositol 3-kinase

ERK:

extracellular regulated kinase

MAPK:

mitogen-activated protein kinase

PDGF:

platelet-derived growth factor

FBS:

fetal bovine serum

SDS–PAGE:

sodium dodecyl sulfate-polyacrylamide gel electrophoresis

HSPG:

heparin sulfate proteoglycan

FN:

fibronectin, MEK, mitogen-activated kinase-kinase

AKT:

Akt kinase

a-, b-FGF:

acidic-, basic-fibroblast growth factor.

References

  • Adam L, Vadlamudi R, Kondapaka SB, Chernoff J, Mendelsohn J, Kumar R . 1998 J. Biol. Chem. 273: 28238–28246

  • Ahn NG, Weiel JE, Chan CP, Krebs EG . 1990 J. Biol. Chem. 265: 11487–11494

  • Altiok S, Batt D, Altiok N, Papautsky A, Downward J, Roberts TM, Avraham H . 1999 J. Biol. Chem. 274: 32274–32278

  • Bacic M, Edwards NA, Merrill MJ . 1995 Growth Factors 12: 11–15

  • Blancher C, Moore JW, Talks KL, Houlbrook S, Harris AL . 2000 Cancer Res. 60: 7106–7113

  • Cardin AD, Weintraub HJ . 1989 Arteriosclerosis 9: 21–32

  • Carpenter CL, Cantley LC . 1996 Curr. Opin. Cell. Biol. 8: 153–158

  • Chirgadze DY, Hepple JP, Zhou H, Byrd RA, Blundell TL, Gherardi E . 1999 Nat. Struct. Biol. 6: 72–79

  • Christensen L . 1992 AMPIS Suppl. 26: 1–39

  • Chung J, Grammer TC, Lemon KP, Kazlauskas A, Blenis J . 1994 Nature 370: 71–75

  • Clark EA, Brugge JS . 1995 Science 268: 233–239

  • Clark RA, Wikner NE, Doherty DE, Norris DA . 1988 J. Biol. Chem. 263: 12115–12123

  • Cohen T, Gitay-Goren H, Sharon R, Shibuya M, Halaban R, Levi BZ, Neufeld G . 1995 J. Biol. Chem. 270: 11322–11326

  • Cross DA, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA . 1995 Nature 378: 785–789

  • Cunningham SA, Waxham MN, Arrate PM, Brock TA . 1995 J. Biol. Chem. 270: 20254–20257

  • de Jong JS, van Diest PJ, van der Valk P, Baak JP . 1998a J. Pathol. 184: 44–52

  • de Jong JS, van Diest PJ, van der Valk P, Baak JP . 1998b J. Pathol. 184: 53–57

  • Derman MP, Chen JY, Spokes KC, Songyang Z, Cantley LG . 1996 J. Biol. Chem. 271: 4251–4255

  • Dougher AM, Wasserstrom H, Torley L, Shridaran L, Westdock P, Hileman RE, Fromm JR, Anderberg R, Lyman S, Linhardt RJ, Kaplan J, Terman BI . 1997 Growth Factors 14: 257–268

  • Dougher-Vermazen M, Hulmes JD, Bohlen P, Terman BI . 1994 Biochem. Biophys. Res. Commun. 205: 728–738

  • Downward J . 1998 Science 279: 673–674

  • Dudley DT, Pang L, Decker SJ, Bridges AJ, Saltiel AR . 1995 Proc. Natl. Acad. Sci. USA 92: 7686–7689

  • Folkman J, Klagsbrun M . 1987 Science 235: 442–447

  • Fujikawa K, de Aos Scherpenseel I, Jain SK, Presman E, Christensen RA, Varticovski L . 1999 Exp. Cell. Res. 253: 663–672

  • Gengrinovitch S, Berman B, David G, Witte L, Neufeld G, Ron D . 1999 J. Biol. Chem. 274: 10816–10822

  • Gerber HP, McMurtrey A, Kowalski J, Yan M, Keyt BA, Dixit V, Ferrara N . 1998 J. Biol. Chem. 273: 30336–30343

  • Gitay-Goren H, Soker S, Vlodavsky I, Neufeld G . 1992 J. Biol. Chem. 267: 6093–6098

  • Gospodarowicz D, Abraham JA, Schilling J . 1989 Proc. Natl. Acad. Sci. USA 86: 7311–7315

  • Gospodarowicz D, Cheng J . 1986 J. Cell. Physiol. 128: 475–484

  • Grinnell F, Feld MK . 1979 Cell. 17: 117–129

  • Guo D, Jia Q, Song HY, Warren RS, Donner DB . 1995 J. Biol. Chem. 270: 6729–6733

  • Halper J . 1990 Exp. Cell. Res. 187: 324–327

  • Han J, Ohno N, Pasco S, Monboisse JC, Borel JP, Kefalides NA . 1997 J. Biol. Chem. 272: 20395–20401

  • Hicks K, Friedman B, Rosner MR . 1989 Biochem. Biophys. Res. Commun. 164: 1323–1330

  • Houck KA, Ferrara N, Winer J, Cachianes G, Li B, Leung DW . 1991 Mol. Endocrinol. 5: 1806–1814

  • Jeanny JC, Fayein N, Moenner M, Chevallier B, Barritault D, Courtois Y . 1987 Exp. Cell. Res. 171: 63–75

  • Joukov V, Pajusola K, Kaipainen A, Chilov D, Lahtinen I, Kukk E, Saksela O, Kalkkinen N, Alitalo K . 1996 EMBO J. 15: 290–298

  • Klagsbrun M, D'Amore PA . 1996 Cytokine Growth Factor Rev. 7: 259–270

  • Kodali S, Burkley M, Nag K, Taylor RC, Moudgil VK . 1994 Biochem. Biophys. Res. Commun. 202: 1413–1419

  • Laemmli UK . 1970 Nature 227: 680–685

  • Livant DL, Brabec RK, Kurachi K, Allen DL, Wu Y, Haaseth R, Andrews P, Ethier SP, Markwart S . 2000 J. Clin. Invest. 105: 1537–1545

  • Lupu R, Cardillo M, Harris L, Hijazi M, Rosenberg K . 1995 Semin. Cancer Biol. 6: 135–145

  • Malarkey K, Belham CM, Paul A, Graham A, McLees A, Scott PH, Plevin R . 1995 Biochem. J. 309: 361–375

  • Miralem T, Wang A, Whiteside CI, Templeton DM . 1996a J. Biol. Chem. 271: 17100–17106

  • Miralem T, Whiteside CI, Templeton DM . 1996b Am. J. Physiol. 270: F960–F970

  • Normanno N, Ciardiello F, Brandt R, Salomon DS . 1994 Breast Cancer Res. Treat. 29: 11–27

  • Ormerod EJ, Warburton MJ, Gusterson B, Hughes CM, Rudland PS . 1985 Histochem. J. 17: 1155–1166

  • Paolella G, Henchcliffe C, Sebastio G, Baralle FE . 1988 Nucleic Acids Res. 16: 3545–3557

  • Park JE, Keller GA, Ferrara N . 1993 Mol. Biol. Cell. 4: 1317–1326

  • Pepper MS, Ferrara N, Orci L, Montesano R . 1992 Biochem. Biophys. Res. Commun. 189: 824–831

  • Plouet J, Schilling J, Gospodarowicz D . 1989 EMBO J. 8: 3801–3806

  • Price PJ, Miralem T, Jiang S, Steinberg R, Avraham H . 2001 Cell Growth Diff. 12: 129–135

  • Radisavljevic Z, Avraham H, Avraham S . 2000 J. Biol. Chem. 275: 20770–20774

  • Rapraeger AC, Krufka A, Olwin BB . 1991 Science 252: 1705–1708

  • Ruoslahti E . 1991 J. Clin. Invest. 87: 1–5

  • Ruoslahti E, Hayman EG, Engvall E, Cothran WC, Butler WT . 1981 J. Biol. Chem. 256: 7277–7281

  • Saoncella S, Echtermeyer F, Denhez F, Nowlen JK, Mosher DF, Robinson SD, Hynes RO, Goetinck PF . 1999 Proc. Natl. Acad. Sci. USA 96: 2805–2810

  • Sasisekharan R, Moses MA, Nugent MA, Cooney CL, Langer R . 1994 Proc. Natl. Acad. Sci. USA 91: 1524–1528

  • Sawano A, Takahashi T, Yamaguchi S, Aonuma M, Shibuya M . 1996 Cell Growth Diff. 7: 213–221

  • Sepp-Lorenzino L, Eberhard I, Ma Z, Cho C, Serve H, Liu F, Rosen N, Lupu R . 1996 Oncogene 12: 1679–1687

  • Shahan TA, Ohno N, Pasco S, Borel JP, Monboisse JC, Kefalides NA . 1999a Connect Tissue Res. 40: 221–232

  • Shahan TA, Ziaie Z, Pasco S, Fawzi A, Bellon G, Monboisse JC, Kefalides NA . 1999b Cancer Res. 59: 4584–4590

  • Shibuya M, Ito N, Claesson-Welsh L . 1999 In Current Topics in Microbiology and Immunology Claesson-Welsh L (ed) Springer: Berlin, New York p. 237

    Google Scholar 

  • Soker S, Fidder H, Neufeld G, Klagsbrun M . 1996 J. Biol. Chem. 271: 5761–5767

  • Soldi R, Mitola S, Strasly M, Defilippi P, Tarone G, Bussolino F . 1999 EMBO J. 18: 882–892

  • Speirs V, Atkin SL . 1999 Br. J. Cancer 80: 898–903

  • Sternlicht MD, Bissell MJ, Werb Z . 2000 Oncogene 19: 1102–1113

  • Taga T, Hibi M, Hirata Y, Yamasaki K, Yasukawa K, Matsuda T, Hirano T, Kishimoto T . 1989 Cell 58: 573–581

  • Templeton DM . 1992 Crit. Rev. Clin. Lab. Sci. 29: 141–184

  • Terman B, Khandke L, Dougher-Vermazan M, Maglione D, Lassam NJ, Gospodarowicz D, Persico MG, Bohlen P, Eisinger M . 1994 Growth Factors 11: 187–195

  • Thakker GD, Hajjar DP, Muller WA, Rosengart TK . 1999 J. Biol. Chem. 274: 10002–10007

  • Tischer E, Gospodarowicz D, Mitchell R, Silva M, Schilling J, Lau K, Crisp T, Fiddes JC, Abraham JA . 1989 Biochem. Biophys. Res. Commun. 165: 1198–1206

  • Traverse S, Gomez N, Paterson H, Marshall C, Cohen P . 1992 Biochem. J. 288: 351–355

  • Treisman R . 1992 Trends. Biochem. Sci. 17: 423–426

  • Treisman R . 1994 Curr. Opin. Genet. Dev. 4: 96–101

  • Vlahos CJ, Matter WF, Hui KY, Brown RF . 1994 J. Biol. Chem. 269: 5241–5248

  • Woods A, McCarthy JB, Furcht LT, Couchman JR . 1993 Mol. Biol. Cell. 4: 605–613

  • Yayon A, Klagsbrun M, Esko JD, Leder P, Ornitz DM . 1991 Cell 64: 841–848

  • Yoshiji H, Gomez DE, Shibuya M, Thorgeirsson UP . 1996 Cancer Res. 56: 2013–2016

  • Yu Y, Sato JD . 1999 J. Cell. Physiol. 178: 235–246

Download references

Acknowledgements

We are grateful to Jamal Misleh for technical assistance, Dan Kelley and Sarah Evans for preparation of figures and Janet Delahanty for editing this manuscript. This paper is supported by NIH grants HL 55445 (H Avrahan), CA 76226 (H Avrahan), and Department of the Army DAMD 17-00-1-0152 (T Miralem), DAMD 17-98-8032 (H Avrahan), and DAMD 17-99-9078 (H Avrahan), NIIX/NCI AR21 CA 87290-01 (H Avrahan). This work was done during the terms of an established investigatorship from the American Heart Association (H Avrahan).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hava Avraham.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miralem, T., Steinberg, R., Price, D. et al. VEGF165 requires extracellular matrix components to induce mitogenic effects and migratory response in breast cancer cells. Oncogene 20, 5511–5524 (2001). https://doi.org/10.1038/sj.onc.1204753

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1204753

Keywords

This article is cited by

Search

Quick links