Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Kinetic analysis of Sp1-mediated transcriptional activation of the human DNA polymerase β promoter

Abstract

In the present studies, we have examined the effect of Sp1 on the activation of the human DNA polymerase β (β-pol), a TATA-less promoter. A HeLa cell nuclear extract (NE) based in vitro runoff transcription system of core β-pol promoter human DNA (pβP8) three-step kinetic model of transcription initiation were used to describe the kinetic effect of Sp1. The results showed that distal Sp1-binding sites in the core β-pol promoter are important for transcriptional activation of the pβP8 promoter. A detailed kinetic analysis showed that Sp1 stimulates the activity of the pβP8 promoter through distal Sp1-binding sites by increasing the amount of recruitment, instead of stimulating the apparent rate of RPc assembly (k1). There was no significant effect of Sp1 on the apparent rate of open complex (RPo) formation (k2) or on the apparent rate of promoter clearance (k3) of the pβP8 promoter. These studies define the kinetic mechanisms by which Sp1 may regulate the rate of transcript formation of the pβP8 promoter, and these results may have implications for Sp1 regulation of TATA-less promoters.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Bucher P. . 1990 J. Mol. Biol. 212: 563–578.

  • Dennig J, Hagen G, Beato M and Suske G. . 1995 J. Biol. Chem. 270: 12737–12744.

  • Dynan WS and Tjian R. . 1983a Cell 32: 669–680.

  • Dynan WS and Tjian R. . 1983b Cell 35: 79–87.

  • Dynan WS and Tjian R. . 1985 Nature 316: 774–778.

  • Chen J-L, Attardi LD, Verrijzer CP, Yokomori K and Tjian R. . 1994 Cell 79: 93–105.

  • Chiang CM and Roeder RG. . 1995 Science 267: 531–536.

  • Choy B and Green MR. . 1993 Nature 366: 531–536.

  • Gidoni D, Kadonaga JT, Barerra-Saldana H, Takahashi K, Chambon P and Tjian R. . 1985 Science 230: 511–517.

  • Gill G, Pascal E, Tseng ZH and Tjian R. . 1994 Proc. Natl. Acad. Sci. USA 91: 192–196.

  • Goodrich JA, Cutler G and Tjian R. . 1996 Cell 84: 825–830.

  • Goodrich JA and Tjian R. . 1994 Cell 77: 145–156.

  • Hagen G, Dennig J, Preiss A, Beato M and Suske G. . 1995 J. Biol. Chem. 270: 24989–24994.

  • Hagen H, Muller S, Beato M and Suske G. . 1992 Nucleic Acids Res. 20: 5519–5525.

  • Hagen G, Muller S, Beato M and Suske G. . 1994 EMBO J. 13: 3843–3851.

  • Hai T, Horikoshi M, Roeder RG and Green MR. . 1988 Cell 54: 1043–1051.

  • He F, Narayan S and Wilson SH. . 1996 Biochemistry 35: 1776–1782.

  • Hoey T, Weinzierl ROJ, Gill G, Chen J-T, Dynlacht BD and Tjian R. . 1993 Cell 72: 247–270.

  • Javahery R, Khachi A, Lo K, Zenzie-Gregory B and Smale T. . 1994 Mol. Cell. Biol. 14: 116–127.

  • Kadonaga JT, Carner KC, Masiarz FR and Tjian R. . 1987 Cell 51: 1079–1090.

  • Kingsley C and Winoto A. . 1992 Mol. Cell. Biol. 12: 4251–4261.

  • Lewin B. . 1990 Cell 61: 1161–1164.

  • Lieberman PM and Berk AJ. . 1994 Genes Dev. 8: 995–1006.

  • Majello B, DeLuca P, Hagen G, Suske G and Lania L. . 1994 Nucleic Acids Res. 22: 4914–4921.

  • Maxon ME, Goodrich JA and Tjian R. . 1994 Genes Dev. 8: 515–524.

  • McClure WR. . 1985 Annu. Rev. Biochem. 54: 171–204.

  • Narayan S, Beard WA and Wilson SH. . 1995 Biochemistry 34: 73–80.

  • Narayan S, He F and Wilson SH. . 1996 J. Biol. Chem. 271: 18508–18513.

  • Narayan S, Widen SG, Beard WA and Wilson SH. . 1994 J. Biol. Chem. 269: 12755–12763.

  • Narayan S and Wilson SH. . 2000 Biochemistry 39: 818–823.

  • Pugh BF and Tjian R. . 1990 Cell 61: 1187–1197.

  • Pugh BF and Tjian R. . 1991 Genes Dev. 5: 1935–1945.

  • Shapiro DJ, Sharp PA, Wahli WW and Keller MJ. . 1988 DNA 7: 47–55.

  • Smale ST and Baltimore D. . 1989 Cell 57: 103–113.

  • Smale ST, Schmidt MC, Berk AJ and Baltimore D. . 1990 Proc. Natl. Acad. Sci. USA 87: 4509–4513.

  • Tang H, Sun X, Reinberg D and Ebright RH. . 1996 Proc. Natl. Acad. Sci. USA 93: 1119–1124.

  • Van Dyke MW, Roeder RG and Sawadogo M. . 1988 Science 241: 1335–1338.

  • Wampler SL and Kadonaga JT. . 1992 Genes Dev. 6: 1542–1552.

  • Wang W, Carey M and Gralla JD. . 1992a Science 255: 450–453.

  • Wang W, Gralla JD and Carey M. . 1992b Genes Dev. 6: 1716–1727.

  • Weis L and Reinberg D. . 1997 Mol. Cell. Biol. 17: 2973–2984.

  • Widen SG, Kedar P and Wilson SH. . 1988 J. Biol. Chem. 263: 16992–16998.

  • Yean D and Gralla JD. . 1996 Nucleic Acids Res. 24: 2723–2729.

  • Zawel I and Reinberg D. . 1993 Prog. Nucleic Acids Res. Mol. Biol. 44: 67–108.

Download references

Acknowledgements

This work was supported by NIH grants CA77721 (to S Narayan) and ES06492 (to SH Wilson).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Narayan, S., Wilson, S. Kinetic analysis of Sp1-mediated transcriptional activation of the human DNA polymerase β promoter. Oncogene 19, 4729–4735 (2000). https://doi.org/10.1038/sj.onc.1203823

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1203823

Keywords

Search

Quick links