Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Telomere dynamics, end-to-end fusions and telomerase activation during the human fibroblast immortalization process

Abstract

Loss of telomeric repeats during cell proliferation could play a role in senescence. It has been generally assumed that activation of telomerase prevents further telomere shortening and is essential for cell immortalization. In this study, we performed a detailed cytogenetic and molecular characterization of four SV40 transformed human fibroblastic cell lines by regularly monitoring the size distribution of terminal restriction fragments, telomerase activity and the associated chromosomal instability throughout immortalization. The mean TRF lengths progressively decreased in pre-crisis cells during the lifespan of the cultures. At crisis, telomeres reached a critical size, different among the cell lines, contributing to the peak of dicentric chromosomes, which resulted mostly from telomeric associations. We observed a direct correlation between short telomere length at crisis and chromosomal instability. In two immortal cell lines, although telomerase was detected, mean telomere length still continued to decrease whereas the number of dicentric chromosomes associated was stabilized. Thus telomerase could protect specifically telomeres which have reached a critical size against end-to-end dicentrics, while long telomeres continue to decrease, although at a slower rate as before crisis. This suggests a balance between elongation by telomerase and telomere shortening, towards a stabilized `optimal' length.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  • Allsopp RC, Vaziri H, Patterson C, Goldstein S, Younglai EV, Futcher AB, Greider CW and Harley CB. . 1992 Proc. Natl. Acad. Sci. USA 89: 10114–10118.

  • Benn PA. . 1976 Am. J. Hum. Genet. 28: 465–473.

  • Bilaud T, Brun C, Ancelin K, Koering CE, Laroche T and Gilson E. . 1997 Nature Genet. 17: 236–239.

  • Blasco M, Rizen M, Greider CW and Hanahan D. . 1996 Nature Genet. 12: 200–204.

  • Bodnar AG, Ouellette M, Frolkis M, Holt SE, Chiu C-P, Morin GB, Harley CB, Shay JW, Lichtsteiner S and Wright WE. . 1998 Science 279: 349–352.

  • Broccoli D, Smogorzewska A, Chong L and de Lange T. . 1997 Nature Genet. 17: 231–235.

  • Counter CM. . 1994 J. Virol. 68: 3410–3414.

  • Counter CM, Avilion AA, LeFeuvre CE, Stewart NG, Greider CW, Harley CB and Bacchetti S. . 1992 EMBO J. 11: 1921–1929.

  • Dutrillaux B and Couturier J. . 1981 La pratique de l'analyse chromosomique. Masson: Paris.

  • Feng J, Funk WD, Wang SS, Weinrich SL, Avilion AA, Chiu CP, Adams RR, Chang E, Allsopp RC and Yu J, et al. 1995 Science 269: 1236–1241.

  • Filatov L, Golubovskaya V, Hurt JC, Byrd LL, Phillips JM and Kaufmann WK. . 1998 Oncogene 16: 1825–1838.

  • Graham FL and van der Eb AJ. . 1973 Virology 64: 456–467.

  • Greider CW. . 1991 Cell 67: 645–647.

  • Greider CW and Blackburn EH. . 1985 Cell 43: 405–413.

  • Greider CW and Blackburn EH. . 1987 Cell 51: 887–898.

  • Harley CB. . 1991 Mutation Res. 256: 271–282.

  • Harrington L, Zhou W, McPhail T, Oulton R, Yeung DSK, Mar V, Bass MB and Robinson MO. . 1997 Genes Dev. 11: 3109–3115.

  • Hayflick L and Moorhead P. . 1961 Exp. Cell. Res. 25: 585–621.

  • Holt SE, Wright WE and Shay JW. . 1996 Mol. Cell. Biol. 16: 2932–2939.

  • Jiang XR, Jimenez G, Chang E, Frolkis M, Kusler B, Sage M, Beeche M, Bodnar AG, Wahl GM, Tlsty TD and Chiu CP. . 1999 Nature Genet. 21: 111–114.

  • Jones CJ, Soley A, Skinner JW, Gupta J, Haughton MF, Wyllie FS, Schlumberger M, Bacchetti S and Wynford-Thomas D. . 1998 Exp. Cell. Res. 240: 333–339.

  • Kim NW, Piatyszek MA, Prowse KR, Harley CB, West WD, Ho PL, Coviello GM, Wright WE, Weinrich SL and Shay JW. . 1994 Science 266: 2011–2014.

  • Klingelhutz AJ, Barber SA, Smith PP, Dyer K and McDougall JK. . 1994 Mol. Cell. Biol. 14: 961–969.

  • Lansdorp PM, Verwoerd NP, van de Rijke FM, Dragowska V, Little M-T, Dirks RW, Raap AK and Tanke HJ. . 1996 Hum. Mol. Genet. 5: 685–691.

  • Lingner J, Cooper JP and Cech TR. . 1995 Science 269: 1533–1534.

  • McClintock B. . 1939 Proc. Natl. Acad. Sci. USA 25: 405–416.

  • Meyerson M, Counter CM, Eaton EN, Ellisen LW, Steiner P, Dickinson Caddle S, Ziaugra L, Beijersbergen RL, Davidoff MJ, Liu Q, Bacchetti S, Haber DA and Weinberg RA. . 1997 Cell 90: 785–795.

  • Morales CP, Holt SE, Ouellette M, Kaur KJ, Yan Y, Wilson KS, White MA, Wright WE and Shay JW. . 1999 Nature Genet. 21: 115–118.

  • Nakayama J-i, Tahara H, Tahara E, Saito M, Ito K, Nakamura H, Nakanishi T, Tahara E, Ide T and Ishikawa F. . 1998 Nature Genet. 18: 65–68.

  • Oerter KE, Munson PJ, McBride WO and Rodbard D. . 1990 Anal. Biochem. 189: 235–243.

  • Olovnikov A. . 1973 J. Theor. Biol. 41: 181–190.

  • Rhyu MS. . 1995 J. Natl. Cancer Inst. 87: 884–894.

  • Rubin H. . 1998 Nat. Biotech. 16: 396–397.

  • Sandell LL and Zakian VA. . 1993 Cell 75: 729–739.

  • Shay JW, Pereira-Smith OM and Wright WE. . 1991 Exp. Cell. Res. 196: 33–39.

  • Shen M, Haggblom C, Vogt M, Hunter T and Lu KP. . 1997 Proc. Natl. Acad. Sci. USA 94: 13618–13623.

  • Sprung CN, Sabatier L and Murnane JP. . 1998 Exp. Cell Res. in press.

  • Tommerup H, Dousmanis A and de Lange T. . 1994 Mol. Cell. Biol. 14: 5777–5785.

  • van Steensel B and de Lange T. . 1997 Nature 385: 740–743.

  • van Steensel B, Smogorzewska A and de Lange T. . 1998 Cell 92: 401–413.

  • Wan TSK, Martens UM, Poon SSS, Tsao S-W, Chan LC and Landsdorp PM. . 1999 Genes Chrom. Cancer 24: 83–86.

  • Watson JD. . 1972 Nature 239: 197–201.

  • Wright JH and Shay JW. . 1992 Esp. Geron 27: 383–389.

  • Wright WE, Pereira-Smith OM and Shay JW. . 1989 Mol. Cell. Biol. 9: 3088–3092.

Download references

Acknowledgements

We thank M Ricoul, S Gallimant V Debonne, E Grégoire, G Pottier and C Gzanotier for their helpful technical assistance, C Brun for her advice on Bal 31 experiments, J Lebeau for the cell lines establishments, C Desmaze for comments on the manuscript and E Gilson for helpful discussions. This work was supported by CEC.PL 950008, EDF France n° 8703 and ACC-SV 8.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ducray, C., Pommier, JP., Martins, L. et al. Telomere dynamics, end-to-end fusions and telomerase activation during the human fibroblast immortalization process. Oncogene 18, 4211–4223 (1999). https://doi.org/10.1038/sj.onc.1202797

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1202797

Keywords

This article is cited by

Search

Quick links