Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Higher urinary albumin excretion is associated with abnormal erythrocyte Na+/Li+ countertransport (SLC) in non-modulating essential hypertensives and offspring of hypertensive parents

Abstract

Non-modulating is a highly reproducible type of sodium-sensitive hypertension. The aim of this study was to evaluate in non-modulating individuals the erythrocyte sodium-lithium countertransport (SLC) abnormalities, which have been mentioned as a marker of non-modulation, and the association with increased microalbuminuria, as a marker of an early kidney impairment. We measured erythrocyte SLC in 10 normotensives (NT, 28 ± 4 years), 20 offspring of hypertensive parents being 10 modulating (MHO, 25 ± 6 years) and 10 non-modulating (NMHO, 26 ± 5 years), and 23 essential hypertensives being 12 modulating (MHT, 34 ± 5 years) and 11 non-modulating (NMHT, 32 ± 4 years). In all the subjects studied, microalbuminuria was determined by duplicate 24-h urine collection by radioimmunoassay. In non-modulating offspring of hypertensive parents and essential hypertensives. SLC was significantly elevated when compared either with normotensives without family history of hypertension, modulating offspring of hypertensive parents or essential hypertensives (P < 0.025). Likewise, 24-h urinary albumin excretion was found higher in non-modulating individuals (essential hypertensives and offspring of hypertensive parents) than in modulating individuals (P < 0.01). In conclusion, non-modulators with higher SLC countertransport sodium transport abnormalities showed higher elimination of microalbuminuria suggesting that non-modulators may have an increased risk for developing cardiovascular morbidity and kidney impairment even in normotensive subjects with familiarity history of hypertension.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Dahl LH . Salt and Hypertension Am J Clin Nutr 1992 25: 231–244

    Article  Google Scholar 

  2. Mac Gregor GA . Sodium is more important than calcium in essential hypertension Hypertension 1985 7: 628–637

    Article  CAS  Google Scholar 

  3. Weinberger NH . Salt sensitivity as a predictor of hypertension Am J Hypertens 1991 4: 615s–616s

    Article  CAS  PubMed  Google Scholar 

  4. Williams GH, Hollenberg NK . Non-modulating hypertension: a subset of sodium sensitive hypertension Hypertension 1991 17 (Suppl 1): 1–81–1–85

    Google Scholar 

  5. Sánchez RA et al. Erythrocyte sodium-lithium countertransport in non-modulating offspring and essential hypertensive individuals Hypertension 1997 30: 99–105

    Article  PubMed  Google Scholar 

  6. Ramrez AJ et al. Renal sodium handling abnormalities in hypertensives and normotensivepatients with a family history of hypertension J Hypertens 1989 7 (Suppl 7): S19–S20

    Google Scholar 

  7. Redgrave J et al. Red blood cell lithium countertransport in non-modulating essential hypertension Hypertension 1989 13: 721–726

    Article  CAS  PubMed  Google Scholar 

  8. Kahn AM, Allen JC, Cragoe EG jr . Shelat H. Sodium-lithium exchange and sodium-proton exchange are mediated by the same transport system in sarcolemmal vesicles from bovine superior mesenteric artery Circ Res 1989 65: 818–828

    Article  CAS  PubMed  Google Scholar 

  9. Canessa ML . Morgan K, Semplicini A. Genetic differences in lithium sodium exchange and regulation of the sodium-hydrogen exchanger in essential hypertension J Cardiovasc Pharmacol 1988 12: S92–S98

    Article  PubMed  Google Scholar 

  10. Weder AB . Red cell lithium-sodium countertransport and renal lithium clearence in hypertension N Engl J Med 1987 314: 198–201

    Article  Google Scholar 

  11. Doria A et al. Insulin resistance is associated with high sodium-lithium countertransport in essential hypertension Am J Physiol 1991 261: E684–691

    CAS  PubMed  Google Scholar 

  12. Ruilope LM . The kidney as part of the cardiovascular system J Cardiovsc Pharmacol 1999 3 (Suppl 1): S7–S10

    Article  Google Scholar 

  13. Bigazzi R et al. Microlbuminuria in salt-sensitivepatients. A marker for renal and cardiovascular risk factors Hypertension 1994 23: 195–199

    Article  CAS  PubMed  Google Scholar 

  14. Schnurr E, Lahma W, Kuppers H . Measurements of renal clearence of inulin and PAH in the steady-state without urine collection Clin Nephrol 1980 13: 26–29

    CAS  PubMed  Google Scholar 

  15. Canessa M et al. Increased sodium-lithium countertransport in red cells ofpatients with essential hypertension N Engl J Med 1980 302: 772–776

    Article  CAS  PubMed  Google Scholar 

  16. Sánchez RA et al. Actividad reninica plasmatica en la hipertension esencial Medicina (BsAs) 1979 39: 171–179

    Google Scholar 

  17. Ramirez AJ et al. Microalbuminuria in borderline and established hypertension: effects of the antihypertensive treatment High Blood Press 1995 4: 160–166

    Google Scholar 

  18. Hopkins PN et al. Blunted renal vascular response to angiotensin it is associated with a common variant of the angiotensinogen and obesity J Hypertens 1996 14: 199–207

    Article  CAS  PubMed  Google Scholar 

  19. Schmid Ch et al. Dietary salt intake modulates angiotensin II type I receptor gene expression Hypertension 1997 29: 923–929

    Article  CAS  PubMed  Google Scholar 

  20. Gordon MS, Gordon MB, Hollenberg NK, Williams GH . Non-modulating trait may precede the development of hypertension Am J Hypertens 1994 7: 789–793

    Article  CAS  PubMed  Google Scholar 

  21. Geleijinse JM et al. Long-term effects of neonatal sodium restriction on blood pressure Hypertension 1996 29: 913–917

    Article  Google Scholar 

  22. Lluch M et al. Erythrocyte sodium transport, intraplatelet pH, and calcium concentration in salt-sensitive hypertension Hypertension 1996 27: 919–925

    Article  CAS  PubMed  Google Scholar 

  23. Canessa M, Redgrave J, Laski C, Williams GH . Does sodium intake modify red cell Na+ transporter in normal and hypertensive subjects? Am J Hypertens 1989 2: 515–523

    Article  CAS  PubMed  Google Scholar 

  24. Weder AB . Membrane sodium transport and salt-sensitivity of blood pressure Hypertension 1991 17 (Suppl I): 174–180

    Google Scholar 

  25. Luft FC, Agrawal B . Microalbuminuria as a predictive factor for cardiovascular events J Cardiavasc Pharmacol 1999 33 (Suppl II): S11–S15

    Article  Google Scholar 

  26. Nilsson T et al. The relation of microalbuminuria to ambulatory blood pressure and myocardial wall thickness in a population J Intern Med 1998 244: 55–59

    Article  CAS  PubMed  Google Scholar 

  27. Ferrannini E, Buzzigoli RD, Giorico MA . Insulin resistance in essential hypertension N Engl J Med 1987 317: 350–357

    Article  CAS  PubMed  Google Scholar 

  28. Baldoncini R et al. Elevated albumin excretion in nonmodulating essential hypertensivepatients Nephron 1997 76: 264–269

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R A Sánchez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sánchez, R., Giannone, C., Masnatta, L. et al. Higher urinary albumin excretion is associated with abnormal erythrocyte Na+/Li+ countertransport (SLC) in non-modulating essential hypertensives and offspring of hypertensive parents. J Hum Hypertens 16 (Suppl 1), S128–S132 (2002). https://doi.org/10.1038/sj.jhh.1001358

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.jhh.1001358

Keywords

This article is cited by

Search

Quick links