Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Brain neuropeptide Y and CCK and peripheral adipokine receptors: temporal response in obesity induced by palatable diet

Abstract

Objective:

Palatable food disrupts normal appetite regulation, which may contribute to the etiology of obesity. Neuropeptide Y (NPY) and cholecystokinin play critical roles in the regulation of food intake and energy homeostasis, while adiponectin and carnitine palmitoyltransferase (CPT) are important for insulin sensitivity and fatty acid oxidation. This study examined the impact of short- and long-term consumption of palatable high-fat diet (HFD) on these critical metabolic regulators.

Methods:

Male C57BL/6 mice were exposed to laboratory chow (12% fat), or cafeteria-style palatable HFD (32% fat) for 2 or 10 weeks. Body weight and food intake were monitored throughout. Plasma leptin, hypothalamic NPY and cholecystokinin, and mRNA expression of leptin, adiponectin, their receptors and CPT-1, in fat and muscles were measured.

Results:

Caloric intake of the palatable HFD group was 2–3 times greater than control, resulting in a 37% higher body weight. Fat mass was already increased at 2 weeks; plasma leptin concentrations were 2.4 and 9 times higher than control at 2 and 10 weeks, respectively. Plasma adiponectin was increased at 10 weeks. Muscle adiponectin receptor 1 was increased at 2 weeks, while CPT-1 mRNA was markedly upregulated by HFD at both time points. Hypothalamic NPY and cholecystokinin content were significantly decreased at 10 weeks.

Conclusion:

Palatable HFD induced hyperphagia, fat accumulation, increased adiponectin, leptin and muscle fatty acid oxidation, and reduced hypothalamic NPY and cholecystokinin. Our data suggest that the adaptive changes in hypothalamic NPY and muscle fatty acid oxidation are insufficient to reverse the progress of obesity and metabolic consequences induced by a palatable HFD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Prentice AM . Early influences on human energy regulation: thrifty genotypes and thrifty phenotypes. Physiol Behav 2005; 86: 640–645.

    Article  CAS  PubMed  Google Scholar 

  2. West DB, York B . Dietary fat, genetic predisposition, and obesity: lessons from animal models. Am J Clin Nutr 1998; 67: 505S–512S.

    Article  CAS  PubMed  Google Scholar 

  3. Prentice AM, Jebb SA . Fast foods, energy density and obesity: a possible mechanistic link. Obes Rev 2003; 4: 187–194.

    Article  CAS  PubMed  Google Scholar 

  4. Schwartz MW, Woods SC, Porte DJ, Seeley RJ, Baskin DG . Central nervous system control of food intake. Nature 2000; 404: 661–671.

    Article  CAS  PubMed  Google Scholar 

  5. Williams G, Harrold JA, Cutler DJ . The hypothalamus and the regulation of energy homeostasis: lifting the lid on a black box. Proc Nutr Soc 2000; 59: 385–396.

    Article  CAS  PubMed  Google Scholar 

  6. Wynne K, Stanley S, McGowan B, Bloom S . Appetite control. J Endocrinol 2005; 184: 291–318.

    Article  CAS  PubMed  Google Scholar 

  7. Williams G, Bing C, Cai XJ, Harrold JA, King PJ, Liu XH . The hypothalamus and the control of energy homeostasis: different circuits, different purposes. Physiol Behav 2001; 74: 683–701.

    Article  CAS  PubMed  Google Scholar 

  8. Egawa M, Yoshimatsu H, Bray GA . Neuropeptide Y suppresses sympathetic activity to interscapular brown adipose tissue in rats. Am J Physiol 1991; 260: R328–R334.

    CAS  PubMed  Google Scholar 

  9. Beglinger C, Degen L . Fat in the intestine as a regulator of appetite role of CCK. Physiol Behav 2004; 83: 617–621.

    Article  CAS  PubMed  Google Scholar 

  10. Blevins JE, Stanley BG, Reidelberger RD . Brain regions where cholecystokinin suppresses feeding in rats. Brain Res 2000; 860: 1–10.

    Article  CAS  PubMed  Google Scholar 

  11. Covasa M, Marcuson JK, Ritter RC . Diminished satiation in rats exposed to elevated levels of endogenous or exogenous cholecystokinin. Am J Physiol Regul Integr Comp Physiol 2001; 280: R331–337.

    Article  CAS  PubMed  Google Scholar 

  12. Weiland TJ, Voudouris NJ, Kent S . The role of CCK2 receptors in energy homeostasis: insights from the CCK2 receptor-deficient mouse. Physiol Behav 2004; 82: 471–476.

    Article  CAS  PubMed  Google Scholar 

  13. Beltowski J . Adiponectin and resistin—new hormones of white adipose tissue. Med Sci Monit 2003; 9: RA55–RA61.

    CAS  PubMed  Google Scholar 

  14. Vionnet N, Hani E-H, Dupont S, Gallina S, Francke S, Dotte S et al. Genome wide search for type 2 diabetes-susceptibility genes in French whites: evidence for a novel susceptibility locus for early-onset diabetes on chromosome 3q27-qter and independent replication of a type 2-diabetes locus on chromosome 1q21–q24. Am J Hum Genet 2000; 67: 1470–1480.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Foster DW . The role of the carnitine system in human metabolism. Ann NY Acad Sci 2004; 1033: 1–16.

    Article  CAS  PubMed  Google Scholar 

  16. Duncan BB, Schmidt MI, Pankow JS, Bang H, Couper D, Ballantyne CM et al. Adiponectin and the development of type 2 diabetes: the atherosclerosis risk in communities study. Diabetes 2004; 53: 2473–2478.

    Article  CAS  PubMed  Google Scholar 

  17. Cote M, Mauriege P, Bergeron J, Almeras N, Tremblay A, Lemieux I et al. Adiponectinemia in visceral obesity: impact on glucose tolerance and plasma lipoprotein-lipid levels in men. J Clin Endocrinol Metab 2004; 90: 1434–1439.

    Article  PubMed  Google Scholar 

  18. Kim J-Y, Hickner RC, Cortright RL, Dohm GL, Houmard JA . Lipid oxidation is reduced in obese human skeletal muscle. Am J Physiol Endocrinol Metab 2000; 279: E1039–E1044.

    Article  CAS  PubMed  Google Scholar 

  19. Bruce CR, Thrush AB, Mertz VA, Bezaire V, Chabowski A, Heigenhauser GJF et al. Endurance training in obese humans improves glucose tolerance, mitochondrial fatty acid oxidation and alters muscle lipid content. Am J Physiol Endocrinol Metab 2006; 291: E99–E107.

    Article  CAS  PubMed  Google Scholar 

  20. Erlanson-Albertsson C . How palatable food disrupts appetite regulation. Basic Clin Pharmacol Toxicol 2005; 97: 61–73.

    Article  CAS  PubMed  Google Scholar 

  21. Hansen MJ, Ball MJ, Morris MJ . Enhanced inhibitory feeding response to alpha-melanocyte stimulating hormone in the diet-induced obese rat. Brain Res 2001; 892: 130–137.

    Article  CAS  PubMed  Google Scholar 

  22. Hansen MJ, Jovanovska V, Morris MJ . Adaptive responses in hypothalamic neuropeptide Y in the face of prolonged high-fat feeding in the rat. J Neurochem 2004; 88: 909–916.

    Article  CAS  PubMed  Google Scholar 

  23. Morris MJ, Russell AE, Kapoor V, Cain MD, Elliott JM, West MJ et al. Increases in plasma neuropeptide Y concentrations during sympathetic activation in man. J Auton Nerv Syst 1986; 17: 143–149.

    Article  CAS  PubMed  Google Scholar 

  24. Zavros Y, Shulkes A . Cholecystokinin (CCK) regulates somatostatin secretion through both the CCK-A and CCK-B/gastrin receptors in sheep. J Physiol 1997; 505: 811–821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Murphy RM, Watt KKO, Cameron-Smith D, Gibbons CJ, Snow RJ . Effects of creatine supplementation on housekeeping genes in human skeletal muscle using real-time RT–PCR. Physiol Genomics 2003; 12: 163–174.

    Article  CAS  PubMed  Google Scholar 

  26. Wang H, Storlien LH, Huang XF . Effects of dietary fat types on body fatness, leptin, and ARC leptin receptor, NPY, and AgRP mRNA expression. Am J Physiol Endocrinol Metab 2002; 282: E1352–E1359.

    Article  CAS  PubMed  Google Scholar 

  27. Ziotopoulou M, Mantzoros CS, Hileman SM, Flier JS . Differential expression of hypothalamic neuropeptides in the early phase of diet-induced obesity in mice. Am J Physiol Endocrinol Metab 2000; 279: E838–E845.

    Article  CAS  PubMed  Google Scholar 

  28. Huang XF, Xin X, McLennan P, Storlien L . Role of fat amount and type in ameliorating diet-induced obesity: insights at the level of hypothalamic arcuate nucleus leptin receptor, neuropeptide Y and pro-opiomelanocortin mRNA expression. Diabetes Obes Metab 2004; 6: 35–44.

    Article  CAS  PubMed  Google Scholar 

  29. Petro AE, Cotter J, Cooper DA, Peters JC, Surwit SJ, Surwit RS . Fat, carbohydrate, and calories in the development of diabetes and obesity in the C57BL/6J mouse. Metabolism 2004; 53: 454–457.

    Article  CAS  PubMed  Google Scholar 

  30. Ghibaudi L, Cook J, Farley C, van Heek M, Hwa JJ . Fat intake affects adiposity, comorbidity factors, and energy metabolism of Sprague–Dawley rats. Obes Res 2002; 10: 956–963.

    Article  CAS  PubMed  Google Scholar 

  31. Koob GF, Moal ML . Drug abuse: hedonic homeostatic dysregulation. Science 1997; 278: 52–58.

    Article  CAS  PubMed  Google Scholar 

  32. Levine AS, Kotz CM, Gosnell BA . Sugars and fats: the neurobiology of preference. J Nutr 2003; 133: 831S–8834.

    Article  CAS  PubMed  Google Scholar 

  33. Saper CB, Chou TC, Elmquist JK . The need to feed: homeostatic and hedonic control of eating. Neuron 2002; 36: 199–211.

    Article  CAS  PubMed  Google Scholar 

  34. Baskin DG, Breininger JF, Schwartz MW . Leptin receptor mRNA identifies a subpopulation of neuropeptide Y neurons activated by fasting in rat hypothalamus. Diabetes 1999; 48: 828–833.

    Article  CAS  PubMed  Google Scholar 

  35. Stephens TW, Basinski M, Bristow PK, Bue-Valleskey JM, Burgett SG, Craft L et al. The role of neuropeptide Y in the antiobesity action of the obese gene product. Nature 1995; 377: 530–532.

    Article  CAS  PubMed  Google Scholar 

  36. Lee J, Morris MJ . Modulation of neuropeptide Y overflow by leptin in the rat hypothalamus, cerebral cortex and medulla. Neuroreport 1998; 9: 1575–1580.

    Article  CAS  PubMed  Google Scholar 

  37. Halaas JL, Boozer C, Blair-West J, Fidahusein N, Denton DA, Friedman JM . Physiological response to long-term peripheral and central leptin infusion in lean and obese mice. Proc Natl Acad Sci USA 1997; 94: 8878–8883.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Broberger C, Johansen J, Brismar H, Johansson C, Schalling M, Hokfelt T . Changes in neuropeptide Y receptors and pro-opiomelanocortin in the anorexia (anx/anx) mouse hypothalamus. J Neurosci 1999; 19: 7130–7139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Levin BE . Arcuate NPY neurons and energy homeostasis in diet-induced obese and resistant rats. Am J Physiol 1999; 276: R382–R387.

    CAS  PubMed  Google Scholar 

  40. Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM . Positional cloning of the mouse obese gene and its human homologue. Nature 1994; 372: 425–432.

    Article  CAS  PubMed  Google Scholar 

  41. Beck B, Stricker-Krongrad A, Burlet A, Nicolas JP, Burlet C . Influence of diet composition on food intake and hypothalamic neuropeptide Y (NPY) in the rat. Neuropeptides 1990; 17: 197–203.

    Article  CAS  PubMed  Google Scholar 

  42. Wilding JP, Gilbey SG, Mannan M, Aslam N, Ghatei MA, Bloom SR . Increased neuropeptide Y content in individual hypothalamic nuclei, but not neuropeptide Y mRNA, in diet-induced obesity in rats. J Endocrinol 1992; 132: 299–304.

    Article  CAS  PubMed  Google Scholar 

  43. Huang XF, Han M, Storlien LH . The level of NPY receptor mRNA expression in diet-induced obese and resistant mice. Brain Res Mol Brain Res 2003; 115: 21–28.

    Article  CAS  PubMed  Google Scholar 

  44. Bi S, Ladenheim EE, Schwartz GJ, Moran TH . A role for NPY overexpression in the dorsomedial hypothalamus in hyperphagia and obesity of OLETF rats. Am J Physiol Regul Integr Comp Physiol 2001; 281: R254–R260.

    Article  CAS  PubMed  Google Scholar 

  45. Widdowson PS, Upton R, Henderson L, Buckingham R, Wilson S, Williams G . Reciprocal regional changes in brain NPY receptor density during dietary restriction and dietary-induced obesity in the rat. Brain Res 1997; 774: 1–10.

    Article  CAS  PubMed  Google Scholar 

  46. Geary N . Endocrine controls of eating: CCK, leptin, and ghrelin. Physiol Behav 2004; 81: 719–733.

    Article  CAS  PubMed  Google Scholar 

  47. Saito A, Williams JA, Goldfine ID . Alterations in brain cholecystokinin receptors after fasting. Nature 1981; 289: 599–600.

    Article  CAS  PubMed  Google Scholar 

  48. Straus E, Yalow RS . Gastrointestinal peptides in the brain. Fed Proc 1979; 38: 2320–2324.

    CAS  PubMed  Google Scholar 

  49. Oku J, Inoue S, Glick Z, Bray GA, Walsh JH . Cholecystokinin, bombesin and neurotensin in brain tissue from obese animals. Int J Obes 1984; 8: 171–182.

    CAS  PubMed  Google Scholar 

  50. Morris MJ, Cox HS, Lambert GW, Kaye DM, Jennings GL, Meredith IT et al. Region-specific neuropeptide Y overflows at rest and during sympathetic activation in humans. Hypertension 1997; 29: 137–143.

    Article  CAS  PubMed  Google Scholar 

  51. Zukowska Z, Pons J, Lee EW, Li L . Neuropeptide Y: a new mediator linking sympathetic nerves, blood vessels and immune system? Can J Physiol Pharmacol 2003; 81: 89–94.

    Article  CAS  PubMed  Google Scholar 

  52. Howe PR, Rogers PF, Morris MJ, Chalmers JP, Smith RM . Plasma catecholamines and neuropeptide-Y as indices of sympathetic nerve activity in normotensive and stroke-prone spontaneously hypertensive rats. J Cardiovasc Pharmacol 1986; 8: 1113–1121.

    Article  CAS  PubMed  Google Scholar 

  53. Morris MJ, Kapoor V, Chalmers J . Plasma neuropeptide Y concentration is increased after hemorrhage in conscious rats: relative contributions of sympathetic nerves and the adrenal medulla. J Cardiovasc Pharmacol 1987; 9: 541–545.

    Article  CAS  PubMed  Google Scholar 

  54. Eslami P, Tuck M . The role of the sympathetic nervous system in linking obesity with hypertension in white versus black Americans. Curr Hypertens Rep 2003; 5: 269–272.

    Article  PubMed  Google Scholar 

  55. Amador N, Guizar JM, Malacara JM, Perez-Luque E, Paniagua R . Sympathetic activity and response to ACE inhibitor (enalapril) in normotensive obese and non-obese subjects. Arch Med Res 2004; 35: 54–58.

    Article  CAS  PubMed  Google Scholar 

  56. Rumantir MS, Vaz M, Jennings GL, Collier G, Kaye DM, Seals DR et al. Neural mechanisms in human obesity-related hypertension. J Hypertens 1999; 17: 1125–1133.

    Article  CAS  PubMed  Google Scholar 

  57. Vendrell J, Broch M, Vilarrasa N, Molina A, Gomez JM, Gutierrez C et al. Resistin, adiponectin, ghrelin, leptin, and proinflammatory cytokines: relationships in obesity. Obesity Res 2004; 12: 962–971.

    Article  CAS  Google Scholar 

  58. English PJ, Coughlin SR, Hayden K, Malik IA, Wilding JP . Plasma adiponectin increases postprandially in obese, but not in lean, subjects. Obes Res 2003; 11: 839–844.

    Article  PubMed  Google Scholar 

  59. Morris MJ, Velkoska E, Cole TJ . Central and peripheral contributions to obesity-associated hypertension: impact of early overnourishment. Exp Physiol 2005; 90: 697–702.

    Article  PubMed  Google Scholar 

  60. Yamauchi T, Kamon J, Minokoshi Y, Ito Y, Waki H, Uchida S et al. Adiponectin stimulates glucose utilization and fatty-acid utilization by activating AMP-activated protein kinase. Nat Med 2002; 8: 1288–1295.

    Article  CAS  PubMed  Google Scholar 

  61. Kushi A, Sasai H, Koizumi H, Takeda N, Yokoyama M, Nakamura M . Obesity and mild hyperinsulinemia found in neuropeptide Y-Y1 receptor-deficient mice. Proc Natl Acad Sci USA 1998; 95: 15659–15664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Bruce CR, Mertz VA, Heigenhauser GJF, Dyck DJ . The stimulatory effect of globular adiponectin on insulin-stimulated glucose uptake and fatty acid oxidation is impaired in skeletal muscle from obese subjects. Diabetes 2005; 54: 3154–3160.

    Article  CAS  PubMed  Google Scholar 

  63. Tsuchida A, Yamauchi T, Ito Y, Hada Y, Maki T, Takekawa S et al. Insulin/Foxo1 pathway regulates expression levels of adiponectin receptors and adiponectin sensitivity. J Biol Chem 2004; 279: 30817–30822.

    Article  CAS  PubMed  Google Scholar 

  64. Yamauchi T, Kamon J, Ito Y, Tsuchida A, Yokomizo T, Kita S et al. Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature 2003; 423: 762–769.

    Article  CAS  PubMed  Google Scholar 

  65. Kadowaki T, Yamauchi T . Adiponectin and adiponectin receptors. Endocr Rev 2005; 26: 439–451.

    Article  CAS  PubMed  Google Scholar 

  66. Dulloo AG . A role for suppressed skeletal muscle thermogenesis in pathways from weight fluctuations to the insulin resistance syndrome. Acta Physiol Scand 2005; 184: 295–307.

    Article  CAS  PubMed  Google Scholar 

  67. Kamohara S, Burcelin R, Halaas JL, Friedman JM, Charron MJ . Acute stimulation of glucose metabolism in mice by leptin treatment. Nature 1997; 389: 374–377.

    Article  CAS  PubMed  Google Scholar 

  68. Boden G, Chen X, Ruiz J, White JV, Rossetti L . Mechanisms of fatty acid-induced inhibition of glucose uptake. J Clin Invest 1994; 93: 2438–2446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Colberg SR, Simoneau JA, Thaete FL, Kelley DE . Skeletal muscle utilization of free fatty acids in women with visceral obesity. J Clin Invest 1995; 95: 1846–1853.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was funded by a grant of National Health and Medical Research Council of Australia to Margaret J Morris. Hui Chen was supported by a postgraduate scholarship of The University of Melbourne.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M J Morris.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morris, M., Chen, H., Watts, R. et al. Brain neuropeptide Y and CCK and peripheral adipokine receptors: temporal response in obesity induced by palatable diet. Int J Obes 32, 249–258 (2008). https://doi.org/10.1038/sj.ijo.0803716

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.ijo.0803716

Keywords

This article is cited by

Search

Quick links