Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Fasting-induced increases in aquaporin 7 and adipose triglyceride lipase mRNA expression in adipose tissue are attenuated by peroxisome proliferator-activated receptor α deficiency

Abstract

Objective:

To investigate the impact of peroxisome proliferator-activated receptor α deficiency on gene expression of adipose triglyceride lipase and the glycerol transporter aquaglyceroporin 7 in white adipose tissue in the fed and fasted states in relation to glycerol release by isolated adipocytes.

Measurements:

Studies using wild-type and peroxisome proliferator-activated receptor α null mice. Hormone and metabolite concentrations, real-time polymerase chain reaction (PCR), basal and stimulated adipocyte lipolysis, estimated by glycerol release.

Results:

Peroxisome proliferator-activated receptor α deficiency blocked the increase in aquaglyceroporin 7 transcript level and attenuated the increase in adipose triglyceride lipase transcript level in white adipose tissue elicited by fasting. Fasting glycerol levels were lower in peroxisome proliferator-activated receptor α null than wild-type mice, despite increased mobilization of adipocyte fat reserves in vivo as indicated by reduced adipose tissue masses (three distinct depots) and a significantly lower epididymal adipocyte diameter. Basal net glycerol release was unchanged but β-adrenergic-stimulated net glycerol release was higher with isolated adipocytes from fasted peroxisome proliferator-activated receptor α null mice compared with those of fasted wild-type mice.

Conclusion:

Peroxisome proliferator-activated receptor α deficiency prevents effects of fasting to increase adipocyte aquaglyceroporin 7 gene expression, and influences the regulation of inter-tissue glycerol flux after fasting via lowered adipocyte aquaglyceroporin 7 expression. Lowered gene expression of adipose triglyceride lipase and aquaglyceroporin 7 in peroxisome proliferator-activated receptor α null mice is not limiting for adipose triglyceride breakdown in vivo during fasting.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Frayn KN . Adipose tissue as a buffer for daily lipid flux. Diabetologia 2002; 45: 1201–1210.

    Article  CAS  Google Scholar 

  2. Zimmermann R, Strauss JG, Haemmerle G, Schoiswohl G, Birner-Gruenberger R, Riederer M et al. Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science 2004; 306: 1383–1386.

    Article  CAS  Google Scholar 

  3. Haemmerle G, Zimmermann R, Hayn M, Theussl C, Waeg G, Wagner E et al. Hormone-sensitive lipase deficiency in mice causes diglyceride accumulation in adipose tissue, muscle, and testis. J Biol Chem 2002; 277: 4806–4815.

    Article  CAS  Google Scholar 

  4. Mulder H, Sorhede-Winzell M, Contreras JA, Fex M, Strom K, Ploug T et al. Hormone-sensitive lipase null mice exhibit signs of impaired insulin sensitivity whereas insulin secretion is intact. J Biol Chem 2003; 278: 36380–36388.

    Article  CAS  Google Scholar 

  5. Fortier M, Wang SP, Mauriege P, Semache M, Mfuma L, Li H et al. Hormone-sensitive lipase-independent adipocyte lipolysis during beta-adrenergic stimulation, fasting, and dietary fat loading. Am J Physiol Endocrinol Metab 2004; 287: E282–E288.

    Article  CAS  Google Scholar 

  6. Villena JA, Roy S, Sarkadi-Nagy E, Kim KH, Sul HS . Desnutrin, an adipocyte gene encoding a novel patatin domain-containing protein, is induced by fasting and glucocorticoids: ectopic expression of desnutrin increases triglyceride hydrolysis. J Biol Chem 2004; 279: 47066–47075.

    Article  CAS  Google Scholar 

  7. Haemmerle G, Lass A, Zimmermann R, Gorkiewicz G, Meyer C, Rozman J et al. Defective lipolysis and altered energy metabolism in mice lacking adipose triglyceride lipase. Science 2006; 312: 734–737.

    Article  CAS  Google Scholar 

  8. Kishida K, Kuriyama H, Funahashi T, Shimomura I, Kihara S, Ouchi N et al. Aquaporin adipose, a putative glycerol channel in adipocytes. J Biol Chem 2000; 275: 20896–20902.

    Article  CAS  Google Scholar 

  9. Kishida K, Shimomura I, Kondo H, Kuriyama H, Makino Y, Nishizawa H et al. Genomic structure and insulin-mediated repression of the aquaporin adipose (AQPap), adipose-specific glycerol channel. J Biol Chem 2001; 276: 36251–36260.

    Article  CAS  Google Scholar 

  10. Maeda N, Funahashi T, Hibuse T, Nagasawa A, Kishida K, Kuriyama H et al. Adaptation to fasting by glycerol transport through aquaporin 7 in adipose tissue. Proc Natl Acad Sci USA 2004; 101: 17801–17806.

    Article  CAS  Google Scholar 

  11. Hara-Chikuma M, Sohara E, Rai T, Ikawa M, Okabe M, Sasaki S et al. Progressive adipocyte hypertrophy in aquaporin-7-deficient mice: adipocyte glycerol permeability as a novel regulator of fat accumulation. J Biol Chem 2005; 280: 15493–15496.

    Article  CAS  Google Scholar 

  12. Hibuse T, Maeda N, Funahashi T, Yamamoto K, Nagasawa A, Mizunoya W et al. Aquaporin 7 deficiency is associated with development of obesity through activation of adipose glycerol kinase. Proc Natl Acad Sci USA 2005; 102: 10993–10998.

    Article  CAS  Google Scholar 

  13. Knauf C, Rieusset J, Foretz M, Cani PD, Uldry M, Hosokawa M et al. PPAR{alpha} null mice have increased white adipose tissue glucose utilization, GLUT4, and fat mass. role in liver and brain. Endocrinology 2006; 147: 4067–4078.

    Article  CAS  Google Scholar 

  14. Patsouris D, Mandard S, Voshol PJ, Escher P, Tan NS, Havekes LM et al. PPARalpha governs glycerol metabolism. J Clin Invest 2004; 114: 94–103.

    Article  CAS  Google Scholar 

  15. Rodbell M . Metabolism of isolated fat cells. I. Effects of hormones on glucose metabolism and lipolysis. J Biol Chem 1964; 239: 375–380.

    CAS  Google Scholar 

  16. Fryer LG, Holness MJ, Sugden MC . Selective modification of insulin action in adipose tissue by hyperthyroidism. J Endocrinol 1997; 154: 513–522.

    Article  CAS  Google Scholar 

  17. Sugden MC, Bulmer K, Gibbons GF, Knight BL, Holness MJ . Peroxisome-proliferator activated receptor (PPAR) deficiency leads to dysregulation of hepatic lipid and carbohydrate metabolism by fatty acids and insulin. Biochem J 2002; 364: 361–368.

    Article  CAS  Google Scholar 

  18. Kersten S, Seydoux J, Peters JM, Gonzalez FJ, Desvergne B, Wahli W . Peroxisome proliferator-activated receptor alpha mediates the adaptive response to fasting. J Clin Invest 1999; 103: 1489–1498.

    Article  CAS  Google Scholar 

  19. Islam KK, Knight BL, Frayn KN, Patel DD, Gibbons GF . Deficiency of PPARalpha disturbs the response of lipogenic flux and of lipogenic and cholesterogenic gene expression to dietary cholesterol in mouse white adipose tissue. Biochim Biophys Acta 2005; 1734: 259–268.

    Article  CAS  Google Scholar 

  20. Lemberger T, Staels B, Saladin R, Desvergne B, Auwerx J, Wahli W . Regulation of the peroxisome proliferator-activated receptor alpha gene by glucocorticoids. J Biol Chem 1994; 269: 24527–24530.

    CAS  PubMed  Google Scholar 

  21. Guan HP, Li Y, Jensen MV, Newgard CB, Steppan CM, Lazar MA . A futile metabolic cycle activated in adipocytes by antidiabetic agents. Nat Med 2002; 8: 1122–1128.

    Article  CAS  Google Scholar 

  22. Kuriyama H, Shimomura I, Kishida K, Kondo H, Furuyama N, Nishizawa H et al. Coordinated regulation of fat-specific and liver-specific glycerol channels, aquaporin adipose and aquaporin 9. Diabetes 2002; 51: 2915–2921.

    Article  CAS  Google Scholar 

  23. Kondo H, Shimomura I, Kishida K, Kuriyama H, Makino Y, Nishizawa H et al. Human aquaporin adipose (AQPap) gene. Genomic structure, promoter analysis and functional mutation. Eur J Biochem 2002; 269: 1814–1826.

    Article  CAS  Google Scholar 

  24. Baba H, Zhang XJ, Wolfe RR . Glycerol gluconeogenesis in fasting humans. Nutrition 1995; 11: 149–153.

    CAS  PubMed  Google Scholar 

  25. Peroni O, Large V, Beylot M . Measuring gluconeogenesis with [2-13C]glycerol and mass isotopomer distribution analysis of glucose. Am J Physiol Endocrinol Metab 1995; 269: E516–E523.

    Article  CAS  Google Scholar 

  26. Sjarif DR, Ploos van Amstel JK, Duran M, Beemer FA, Poll-The BT . Isolated and contiguous glycerol kinase gene disorders: a review. J Inherit Metab Dis 2000; 23: 529–547.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Diabetes UK (BDA:RDA04/0002863 and BDA:RD03/0002725) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M C Sugden.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walker, C., Holness, M., Gibbons, G. et al. Fasting-induced increases in aquaporin 7 and adipose triglyceride lipase mRNA expression in adipose tissue are attenuated by peroxisome proliferator-activated receptor α deficiency. Int J Obes 31, 1165–1171 (2007). https://doi.org/10.1038/sj.ijo.0803555

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.ijo.0803555

Keywords

This article is cited by

Search

Quick links