Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Prevention of high-fat diet-induced adipose tissue remodeling in obese diabetic mice by n-3 polyunsaturated fatty acids

Abstract

Objective:

Obesity is associated with reduced insulin sensitivity and extensive reorganization of adipose tissue. As polyunsaturated fatty acids (PUFA) appear to inhibit diabetes development, we investigated PUFA effects on markers of matrix remodeling in white adipose tissue.

Methods and procedure:

Male obese diabetic (db/db) mice were treated with either a low-fat standard diet (LF), or high-fat diets rich in saturated and monounsaturated fatty acids (HF/S), n-6 PUFA (HF/6) or the latter including marine n-3 PUFA (HF/3). White adipose tissue was analyzed for gene expression, fatty acid composition and by immunofluorescence.

Results:

HF/S treatment increased adipose tissue expression of a number of genes involved in matrix degradation including matrix metalloproteinase (MMP)-12, -14 and cathepsin K, L and S compared with LF. MMP-12 gene was expressed in macrophages and adipocytes, and MMP-12 protein colocalized with both cell types. In addition, mean adipocyte area increased by 1.6-fold in HF/S-treated mice. Genes essential for collagen production, such as procollagen I, III, VI, tenascin C and biglycan were upregulated in HF/S-treated animals as well. N-3 PUFA supplementation resulted in enrichment of these fatty acids in adipose tissue. Moreover, n-3 PUFA inhibited the HF/S-induced upregulation of genes involved in matrix degradation and production I restored mean adipocyte area and prevented MMP-12 expression in macrophages and adipocytes.

Conclusion:

N-3 PUFA prevent high-fat diet-induced matrix remodeling and adipocyte enlargement in adipose tissue of obese diabetic mice. Such changes could contribute to diabetes prevention by n-3 PUFA in obese patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Crandall DL, Hausman GJ, Kral JG . A review of the microcirculation of adipose tissue: anatomic, metabolic, and angiogenic perspectives. Microcirculation 1997; 4: 211–232.

    Article  CAS  PubMed  Google Scholar 

  2. Carmeliet P, Collen D . Development and disease in proteinase-deficient mice: role of the plasminogen, matrix metalloproteinase and coagulation system. Thromb Res 1998; 91: 255–285.

    Article  CAS  PubMed  Google Scholar 

  3. Vu TH, Werb Z . Matrix metalloproteinases: effectors of development and normal physiology. Genes Dev 2000; 14: 2123–2133.

    Article  CAS  PubMed  Google Scholar 

  4. Chambers AF, Matrisian LM . Changing views of the role of matrix metalloproteinases in metastasis. J Natl Cancer Inst 1997; 89: 1260–1270.

    Article  CAS  PubMed  Google Scholar 

  5. Noel A, Gilles C, Bajou K, Devy L, Kebers F, Lewalle JM et al. Emerging roles for proteinases in cancer. Invasion Metastasis 1997; 17: 221–239.

    CAS  PubMed  Google Scholar 

  6. Hidalgo M, Eckhardt SG . Development of matrix metalloproteinase inhibitors in cancer therapy. J Natl Cancer Inst 2001; 93: 178–193.

    Article  CAS  PubMed  Google Scholar 

  7. Nagase H, Woessner Jr JF . Matrix metalloproteinases. J Biol Chem 1999; 274: 21491–21494.

    Article  CAS  PubMed  Google Scholar 

  8. Chavey C, Mari B, Monthouel MN, Bonnafous S, Anglard P, Van Obberghen E et al. Matrix metalloproteinases are differentially expressed in adipose tissue during obesity and modulate adipocyte differentiation. J Biol Chem 2003; 278: 11888–11896.

    Article  CAS  PubMed  Google Scholar 

  9. Maquoi E, Munaut C, Colige A, Collen D, Lijnen HR . Modulation of adipose tissue expression of murine matrix metalloproteinases and their tissue inhibitors with obesity. Diabetes 2002; 51: 1093–1101.

    Article  CAS  PubMed  Google Scholar 

  10. Lijnen HR, Maquoi E, Hansen LB, Van Hoef B, Frederix L, Collen D . Matrix metalloproteinase inhibition impairs adipose tissue development in mice. Arterioscler Thromb Vasc Biol 2002; 22: 374–379.

    Article  CAS  PubMed  Google Scholar 

  11. Brew K, Dinakarpandian D, Nagase H . Tissue inhibitors of metalloproteinases: evolution, structure and function. Biochim Biophys Acta 2000; 1477: 267–283.

    Article  CAS  PubMed  Google Scholar 

  12. Lijnen HR, Demeulemeester D, Van Hoef B, Collen D, Maquoi E . Deficiency of tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) impairs nutritionally induced obesity in mice. Thromb Haemost 2003; 89: 249–255.

    Article  CAS  PubMed  Google Scholar 

  13. Chan JM, Rimm EB, Colditz GA, Stampfer MJ, Willett WC . Obesity, fat distribution, and weight gain as risk factors for clinical diabetes in men. Diabetes Care 1994; 17: 961–969.

    Article  CAS  PubMed  Google Scholar 

  14. Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante Jr AW . Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 2003; 112: 1796–1808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest 2003; 112: 1821–1830.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Festa A, D'Agostino Jr R, Howard G, Mykkanen L, Tracy RP, Haffner SM . Chronic subclinical inflammation as part of the insulin resistance syndrome: the Insulin Resistance Atherosclerosis Study (IRAS). Circulation 2000; 102: 42–47.

    Article  CAS  PubMed  Google Scholar 

  17. Berg C, Rosengren A, Aires N, Lappas G, Toren K, Thelle D et al. Trends in overweight and obesity from 1985 to 2002 in Goteborg, West Sweden. Int J Obes (London) 2005; 29: 916–924.

    Article  CAS  Google Scholar 

  18. Pradhan AD, Manson JE, Rifai N, Buring JE, Ridker PM . C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus. JAMA 2001; 286: 327–334.

    Article  CAS  PubMed  Google Scholar 

  19. Pradhan AD, Skerrett PJ, Manson JE . Obesity, diabetes, and coronary risk in women. J Cardiovasc Risk 2002; 9: 323–330.

    Article  PubMed  Google Scholar 

  20. Feskens EJ, Bowles CH, Kromhout D . Inverse association between fish intake and risk of glucose intolerance in normoglycemic elderly men and women. Diabetes Care 1991; 14: 935–941.

    Article  CAS  PubMed  Google Scholar 

  21. Herberg L, Coleman DL . Laboratory animals exhibiting obesity and diabetes syndromes. Metabolism 1977; 26: 59–99.

    Article  CAS  PubMed  Google Scholar 

  22. Stulnig TM, Huber J, Leitinger N, Imre EM, Angelisova P, Nowotny P et al. Polyunsaturated eicosapentaenoic acid displaces proteins from membrane rafts by altering raft lipid composition. J Biol Chem 2001; 276: 37335–37340.

    Article  CAS  PubMed  Google Scholar 

  23. Schreiner M . Principles for the analysis of omega-3 fatty acids. In: Teale MC (ed). Omega 3 Fatty Acid Research. Nova Publishers: Hauppauge NY, USA, 2006; 1–25.

    Google Scholar 

  24. Haemmerle G, Zimmermann R, Strauss JG, Kratky D, Riederer M, Knipping G et al. Hormone-sensitive lipase deficiency in mice changes the plasma lipid profile by affecting the tissue-specific expression pattern of lipoprotein lipase in adipose tissue and muscle. J Biol Chem 2002; 277: 12946–12952.

    Article  CAS  PubMed  Google Scholar 

  25. Loffler M, Bilban M, Reimers M, Waldhausl W, Stulnig TM . Blood glucose-lowering nuclear receptor agonists only partially normalize hepatic gene expression in db/db mice. J Pharmacol Exp Ther 2006; 316: 797–804.

    Article  CAS  PubMed  Google Scholar 

  26. Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, Speed TP . Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res 2003; 31: e15.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Todoric J, Loffler M, Huber J, Bilban M, Reimers M, Kadl A et al. Adipose tissue inflammation induced by high-fat diet in obese diabetic mice is prevented by n-3 polyunsaturated fatty acids. Diabetologia 2006; 49: 2109–2119.

    Article  CAS  PubMed  Google Scholar 

  28. Gronski Jr TJ, Martin RL, Kobayashi DK, Walsh BC, Holman MC, Huber M et al. Hydrolysis of a broad spectrum of extracellular matrix proteins by human macrophage elastase. J Biol Chem 1997; 272: 12189–12194.

    Article  CAS  PubMed  Google Scholar 

  29. Shipley JM, Wesselschmidt RL, Kobayashi DK, Ley TJ, Shapiro SD . Metalloelastase is required for macrophage-mediated proteolysis and matrix invasion in mice. Proc Natl Acad Sci USA 1996; 93: 3942–3946.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cousin B, Munoz O, Andre M, Fontanilles AM, Dani C, Cousin JL et al. A role for preadipocytes as macrophage-like cells. FASEB J 1999; 13: 305–312.

    Article  CAS  PubMed  Google Scholar 

  31. Kielty CM, Sherratt MJ, Shuttleworth CA . Elastic fibres. J Cell Sci 2002; 115: 2817–2828.

    CAS  PubMed  Google Scholar 

  32. Wellen KE, Hotamisligil GS . Obesity-induced inflammatory changes in adipose tissue. J Clin Invest 2003; 112: 1785–1788.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chun TH, Hotary KB, Sabeh F, Saltiel AR, Allen ED, Weiss SJ . A pericellular collagenase directs the 3-dimensional development of white adipose tissue. Cell 2006; 125: 577–591.

    Article  CAS  PubMed  Google Scholar 

  34. Chapman HA, Riese RJ, Shi GP . Emerging roles for cysteine proteases in human biology. Annu Rev Physiol 1997; 59: 63–88.

    Article  CAS  PubMed  Google Scholar 

  35. Burns-Kurtis CL, Olzinski AR, Needle S, Fox JH, Capper EA, Kelly FM et al. Cathepsin S expression is up-regulated following balloon angioplasty in the hypercholesterolemic rabbit. Cardiovasc Res 2004; 62: 610–620.

    Article  CAS  PubMed  Google Scholar 

  36. Petanceska S, Canoll P, Devi LA . Expression of rat cathepsin S in phagocytic cells. J Biol Chem 1996; 271: 4403–4409.

    Article  CAS  PubMed  Google Scholar 

  37. Taleb S, Lacasa D, Bastard JP, Poitou C, Cancello R, Pelloux V et al. Cathepsin S, a novel biomarker of adiposity: relevance to atherogenesis. FASEB J 2005; 19: 1540–1542.

    Article  CAS  PubMed  Google Scholar 

  38. Chiellini C, Costa M, Novelli SE, Amri EZ, Benzi L, Bertacca A et al. Identification of cathepsin K as a novel marker of adiposity in white adipose tissue. J Cell Physiol 2003; 195: 309–321.

    Article  CAS  PubMed  Google Scholar 

  39. Nakajima I, Yamaguchi T, Ozutsumi K, Aso H . Adipose tissue extracellular matrix: newly organized by adipocytes during differentiation. Differentiation 1998; 63: 193–200.

    Article  CAS  PubMed  Google Scholar 

  40. Pierleoni C, Verdenelli F, Castellucci M, Cinti S . Fibronectins and basal lamina molecules expression in human subcutaneous white adipose tissue. Eur J Histochem 1998; 42: 183–188.

    CAS  PubMed  Google Scholar 

  41. Nakajima I, Muroya S, Tanabe R, Chikuni K . Positive effect of collagen V and VI on triglyceride accumulation during differentiation in cultures of bovine intramuscular adipocytes. Differentiation 2002; 70: 84–91.

    Article  CAS  PubMed  Google Scholar 

  42. Durante W, Liao L, Reyna SV, Peyton KJ, Schafer AI . Physiological cyclic stretch directs L-arginine transport and metabolism to collagen synthesis in vascular smooth muscle. FASEB J 2000; 14: 1775–1783.

    Article  CAS  PubMed  Google Scholar 

  43. Morris Jr SM . Regulation of enzymes of the urea cycle and arginine metabolism. Annu Rev Nutr 2002; 22: 87–105.

    Article  CAS  PubMed  Google Scholar 

  44. Iyer R, Jenkinson CP, Vockley JG, Kern RM, Grody WW, Cederbaum S . The human arginases and arginase deficiency. J Inherit Metab Dis 1998; 21 (Suppl 1): 86–100.

    Article  CAS  PubMed  Google Scholar 

  45. Schneider BS, Faust IM, Hemmes R, Hirsch J . Effects of altered adipose tissue morphology on plasma insulin levels in the rat. Am J Physiol 1981; 240: E358–E362.

    CAS  PubMed  Google Scholar 

  46. Weyer C, Foley JE, Bogardus C, Tataranni PA, Pratley RE . Enlarged subcutaneous abdominal adipocyte size, but not obesity itself, predicts type II diabetes independent of insulin resistance. Diabetologia 2000; 43: 1498–1506.

    Article  CAS  PubMed  Google Scholar 

  47. Raclot T, Groscolas R, Langin D, Ferre P . Site-specific regulation of gene expression by n-3 polyunsaturated fatty acids in rat white adipose tissues. J Lipid Res 1997; 38: 1963–1972.

    CAS  PubMed  Google Scholar 

  48. Belzung F, Raclot T, Groscolas R . Fish oil n-3 fatty acids selectively limit the hypertrophy of abdominal fat depots in growing rats fed high-fat diets. Am J Physiol 1993; 264: R1111–R1118.

    Article  CAS  PubMed  Google Scholar 

  49. Skurnick-Minot G, Laromiguiere M, Oppert JM, Quignard-BoulanGE A, Boillot J, Rigoir A et al. Whole-body fat mass and insulin sensitivity in type 2 diabetic women: effect of n-3 polyunsaturated fatty acids (Abstract). Diabetes 2004; 53 (Suppl 2): A44 (0159).

    Google Scholar 

  50. Fu Y, Luo N, Klein RL, Garvey WT . Adiponectin promotes adipocyte differentiation, insulin sensitivity, and lipid accumulation. J Lipid Res 2005; 46: 1369–1379.

    Article  CAS  PubMed  Google Scholar 

  51. Lombardo YB, Chicco AG . Effects of dietary polyunsaturated n-3 fatty acids on dyslipidemia and insulin resistance in rodents and humans. A review. J Nutr Biochem 2006; 17: 1–13.

    Article  CAS  PubMed  Google Scholar 

  52. Kliewer SA, Sundseth SS, Jones SA, Brown PJ, Wisely GB, Koble CS et al. Fatty acids and eicosanoids regulate gene expression through direct interactions with peroxisome proliferator-activated receptors alpha and gamma. Proc Natl Acad Sci USA 1997; 94: 4318–4323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Cook KS, Groves DL, Min HY, Spiegelman BM . A developmentally regulated mRNA from 3T3 adipocytes encodes a novel serine protease homologue. Proc Natl Acad Sci USA 1985; 82: 6480–6484.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kim JK, Gavrilova O, Chen Y, Reitman ML, Shulman GI . Mechanism of insulin resistance in A-ZIP/F-1 fatless mice. J Biol Chem 2000; 275: 8456–8460.

    Article  CAS  PubMed  Google Scholar 

  55. Vasandani C, Kafrouni AI, Caronna A, Bashmakov Y, Gotthardt M, Horton JD et al. Upregulation of hepatic LDL transport by n-3 fatty acids in LDL receptor knockout mice. J Lipid Res 2002; 43: 772–784.

    CAS  PubMed  Google Scholar 

  56. Demeulemeester D, Collen D, Lijnen HR . Effect of matrix metalloproteinase inhibition on adipose tissue development. Biochem Biophys Res Commun 2005; 329: 105–110.

    Article  CAS  PubMed  Google Scholar 

  57. Guedez L, Stetler-Stevenson WG, Wolff L, Wang J, Fukushima P, Mansoor A et al. In vitro suppression of programmed cell death of B cells by tissue inhibitor of metalloproteinases-1. J Clin Invest 1998; 102: 2002–2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hayakawa T, Yamashita K, Tanzawa K, Uchijima E, Iwata K . Growth-promoting activity of tissue inhibitor of metalloproteinases-1 (TIMP-1) for a wide range of cells. A possible new growth factor in serum. FEBS Lett 1992; 298: 29–32.

    Article  CAS  PubMed  Google Scholar 

  59. Harris WS . n-3 fatty acids and serum lipoproteins: human studies. Am J Clin Nutr 1997; 65: 1645S–1654S.

    Article  CAS  PubMed  Google Scholar 

  60. Rivellese AA, Maffettone A, Iovine C, Di Marino L, Annuzzi G, Mancini M et al. Long-term effects of fish oil on insulin resistance and plasma lipoproteins in NIDDM patients with hypertriglyceridemia. Diabetes Care 1996; 19: 1207–1213.

    Article  CAS  PubMed  Google Scholar 

  61. Marckmann P, Lassen A, Haraldsdottir J, Sandstrom B . Biomarkers of habitual fish intake in adipose tissue. Am J Clin Nutr 1995; 62: 956–959.

    Article  CAS  PubMed  Google Scholar 

  62. Arterburn LM, Hall EB, Oken H . Distribution, interconversion, and dose response of n-3 fatty acids in humans. Am J Clin Nutr 2006; 83: 1467S–1476S.

    Article  CAS  PubMed  Google Scholar 

  63. Jump DB . The biochemistry of n-3 polyunsaturated fatty acids. J Biol Chem 2002; 277: 8755–8758.

    Article  CAS  PubMed  Google Scholar 

  64. Stulnig TM . Immunomodulation by polyunsaturated fatty acids: mechanisms and effects. Int Arch Allergy Immunol 2003; 132: 310–321.

    Article  CAS  PubMed  Google Scholar 

  65. Zeyda M, Staffler G, Horejsi V, Waldhausl W, Stulnig TM . LAT displacement from lipid rafts as a molecular mechanism for the inhibition of T cell signaling by polyunsaturated fatty acids. J Biol Chem 2002; 277: 28418–28423.

    Article  CAS  PubMed  Google Scholar 

  66. Flachs P, Mohamed-Ali V, Horakova O, Rossmeisl M, Hosseinzadeh-Attar MJ, Hensler M et al. Polyunsaturated fatty acids of marine origin induce adiponectin in mice fed a high-fat diet. Diabetologia 2006; 49: 394–397.

    Article  CAS  PubMed  Google Scholar 

  67. Neschen S, Morino K, Rossbacher JC, Pongratz RL, Cline GW, Sono S et al. Fish oil regulates adiponectin secretion by a peroxisome proliferator-activated receptor-{gamma}-dependent mechanism in mice. Diabetes 2006; 55: 924–928.

    Article  CAS  PubMed  Google Scholar 

  68. Iwaki M, Matsuda M, Maeda N, Funahashi T, Matsuzawa Y, Makishima M et al. Induction of adiponectin, a fat-derived antidiabetic and antiatherogenic factor, by nuclear receptors. Diabetes 2003; 52: 1655–1663.

    Article  CAS  PubMed  Google Scholar 

  69. Lindstrom J, Peltonen M, Eriksson JG, Louheranta A, Fogelholm M, Uusitupa M et al. High-fibre, low-fat diet predicts long-term weight loss and decreased type 2 diabetes risk: the Finnish Diabetes Prevention Study. Diabetologia 2006; 49: 912–920.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Joseph-Skoda-Award of the Austrian Association of Internal Medicine to (TMS) and by CeMM – Center of Molecular Medicine, a basic research institute within the companies of the Austrian Academy of Sciences (to TMS and WW).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T M Stulnig.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huber, J., Löffler, M., Bilban, M. et al. Prevention of high-fat diet-induced adipose tissue remodeling in obese diabetic mice by n-3 polyunsaturated fatty acids. Int J Obes 31, 1004–1013 (2007). https://doi.org/10.1038/sj.ijo.0803511

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.ijo.0803511

Keywords

This article is cited by

Search

Quick links