Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Increased glutathione conjugate transport: a possible compensatory protection mechanism against oxidative stress in obesity?

Abstract

Objective:

To compare glutathione S-conjugate transport in obese and nonobese persons, and how glutathione S-conjugates are involved in the antioxidant status in obesity.

Materials and methods:

The efflux of glutathione conjugates and malondialdehyde (MDA) levels were measured in erythrocytes of obese (N=33) and nonobese (N=28) persons at every 30 min during a 120 min incubation time in vitro. 2,4-dinitrophenyl-S-glutathione (DNP-SG) represented the glutathione S-conjugate.

Results:

The efflux of conjugate in erythrocytes from obese subjects (708±147 DNP-SG efflux nmol/ml erythrocytes/h) was significantly higher than that of control group (490±105 DNP-SG efflux nmol/ml erythrocytes/h) (P<0.05). At all time points measured (30–120 min), there was an increase in DNP-SG efflux in obese group (P<0.05). This is manifested by a decrease in cellular DNP-SG levels. The susceptibility of erythrocytes to in vitro 1-chloro-2,4-dinitrobenzene (CDNB)-induced oxidative stress were greater for cells of control group (P<0.05), although hemolysis sensitivity of these cells are not different between both groups (P>0.05). Following CDNB pretreatment, incubation of erythrocyte with vanadate, a DNP-SG transport inhibitor, resulted in an increase of MDA in both groups. However, in this case, the difference in susceptibility was not related to obesity. On the other hand, while erythrocyte glutathione level was lower in obese subjects (79% of control) than in controls (P<0.05), the adenosine 5′-triphosphate (ATP) levels, the enzyme activities of glutathione S-transferase (GST) and the conjugation capacities of the erythrocytes were not different between groups (P>0.05).

Conclusion:

Obesity may increase erythrocyte glutathione conjugate transport independent from ATP and GST activity that may protect against MDA formation in vitro.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Kirkland DJ, Muller L . Interpretation of the biological relevance of genotoxicity test results: the importance of thresholds. Mutat Res 2000; 464: 37–147.

    Google Scholar 

  2. Pratt IS, Barron T . Regulatory recognition of indirect genotoxicity mechanisms in the European Union. Toxicol Lett 2003; 140–141: 53–62.

    Article  Google Scholar 

  3. Asayama K, Nakane T, Dobashi K, Kodera K, Hayashibe H, Uchida N et al. Effect of obesity and troglitazone on expression of two glutathione peroxidases: cellular and extracellular types in serum, kidney and adipose tissue. Free Radic Res 2001; 34: 337–347.

    Article  CAS  Google Scholar 

  4. Carmiel-Haggai M, Cederbaum AI, Nieto N . Binge ethanol exposure increases liver injury in obese rats. Gastroenterology 2003; 125: 1818–1833.

    Article  CAS  Google Scholar 

  5. Roe AL, Howard G, Blouin R, Snawder JE . Characterization of cytochrome P450 and glutathione S-transferase activity and expression in male and female ob/ob mice. Int J Obes Relat Metab Disord 1999; 23: 48–53.

    Article  CAS  Google Scholar 

  6. Watson AM, Poloyac SM, Howard G, Blouin RA . Effect of leptin on cytochrome P-450, conjugation, and antioxidant enzymes in the ob/ob mouse. Drug Metab Dispos 1999; 27: 695–700.

    CAS  PubMed  Google Scholar 

  7. Faber P, Johnstone AM, Gibney ER, Elia M, Stubbs RJ, Duthie GG et al. The effect of rate of weight loss on erythrocyte glutathione concentration and synthesis in healthy obese men. Clin Sci 2002; 102: 569–577.

    Article  CAS  Google Scholar 

  8. Cazzola R, Rondanelli M, Russo-Volpe S, Ferrari E, Cestaro B . Decreased membrane fluidity and altered susceptibility to peroxidation and lipid composition in overweight and obese female erythrocytes. J Lipid Res 2004; 45: 1846–1851.

    Article  CAS  Google Scholar 

  9. Sharma R, Awasthi S, Zimniak P, Awasthi YC . Transport of glutathione-conjugates in human erythrocytes. Acta Biochim Pol 2000; 47: 751–762.

    CAS  PubMed  Google Scholar 

  10. Pickett CB, Lu AYH . Glutathione S-transferases: gene structure, regulation, and biological function. Ann Rev Biochem 1989; 58: 743–764.

    Article  CAS  Google Scholar 

  11. Awasthi S, Srivastava SK, Ahmad F, Ahmad H, Ansari GA . Interaction of glutathione S-transferase with ethacrynic acid and its glutathione conjugate. Biochim Biophys Acta 1993; 1164: 173–178.

    Article  CAS  Google Scholar 

  12. Bilzer M, Krauth-Siegel RL, Schirmer RIJ, Akerboom TP, Sies JJ, Schulz GE . Protein structure interaction of a glutathione S-conjugate with glutathione reductase. Kinetic and X-ray crystallographic studies. Eur J Biochemistry 1984; 138: 373–378.

    Article  CAS  Google Scholar 

  13. Board PG . Transport of glutathione S-conjugates from human erythrocytes. FEBS Lett 1981; 124: 163–165.

    Article  CAS  Google Scholar 

  14. La Belle EF, Singh SV, Srivastava SK, Awasthi YC . Evidence for different transport systems for oxidized glutathione and S-dinitrophenyl glutathione in human erythrocytes. Biochim Biophys Acta 1986; 139: 538–544.

    CAS  Google Scholar 

  15. Awasthi YC, Misra G, Rassinand DK, Srivastava SK . Detoxification of xenobiotics of glutathione S-transferases in erythrocytes: the transport of the conjugate of glutathione and 1-choloro-2,4-dinitrobenzene. Br J Haematol 1983; 55: 419–425.

    Article  CAS  Google Scholar 

  16. Ishikawa T . ATP:Mg2-dependent cardiac transport system for glutathione S-conjugates. J Biol Chem 1989; 264: 17343–17348.

    CAS  PubMed  Google Scholar 

  17. Grune T, Siems W, Kowalewski J, Zollner H, Esterbauer H . Identification of metabolic pathways of the lipid peroxidation product 4-hydroxynonenal by enterocytes of rat small intestine. Biochem Int 1991; 25: 963–971.

    CAS  PubMed  Google Scholar 

  18. Akerboom TPM, Bartosz G, Sies H . Low and high-Km transport of dinitrophenyl glutathione in inside out vesicles from human erythrocytes. Biochim Biophys Acta 1992; 1103: 115–119.

    Article  CAS  Google Scholar 

  19. Barnett CR, Abbott RA, Bailey CJ, Flatt PR, Ioannides C . Cytochrome P-450-dependent mixed-function oxidase and glutathione S-transferase activities in spontaneous obesity-diabetes. Biochem Pharmacol 1992; 43: 1868–1871.

    Article  CAS  Google Scholar 

  20. Beltowski J, Wojcicka G, Gorny D, Marciniak A . The effect of dietary-induced obesity on lipid oxidation, antioxidant enzymes and total plasma antioxidant capacity. J Physiol Pharmacol 2000; 51: 883–896.

    CAS  Google Scholar 

  21. Prohaska JR, Wittmers LE, Haller Jr EW . Influence of genetic obesity, food intake and adrenalectomy in mice on selected trace element-dependent protective enzymes. J Nutr 1988; 118: 739–746.

    Article  CAS  Google Scholar 

  22. York JL, Wolff GL . Glutathione S-transferase activity and isoenzyme concentrations in obese Avy/a and lean a/a mice. Proc Soc Exp Biol Med 1994; 205: 186–189.

    Article  CAS  Google Scholar 

  23. Preventing and managing the global epidemic of obesity: report of a WHO Consultation on Obesity. WHO/NUT/NCD98.1, Geneva, 1998.

  24. Onaran I, Yalcin AS, Sultuybek G . Effect of donor age on the susceptibility of erythrocytes and erythrocyte membranes to cumene hydroperoxide-induced oxidative stress. Mech Ageing Dev 1997; 98: 127–138.

    Article  CAS  Google Scholar 

  25. Beutler E (ed.). Red cell metabolism. In: A Manual of Biochemical Methods 3rd edn. Grune and Stratton: New York, 1984, pp. 8–19.

    Google Scholar 

  26. Habig WH, Pabs MJ, Jacobs WB . Glutathione S-transferases. J Biol Chem 1974; 279: 7130–7139.

    Google Scholar 

  27. Lin X, Zhang F, Bradbury CM, Kaushal A, Li L, Spitz DR et al. 2-Deoxy-D-glucose-induced cytotoxicity and radiosensitization in tumor cells is mediated via disruptions in thiol metabolism. Cancer Res 2003; 63: 3413–3417.

    CAS  Google Scholar 

  28. Shen HM, Ding WX, Ong CN . Intracellular glutathione is a cofactor in methylseleninic acid-induced apoptotic cell death of human hepatoma HEPG(2) cells. Free Radic Biol Med 2002; 33: 552–561.

    Article  CAS  Google Scholar 

  29. Borenshtein D, Ofri R, Werman M, Stark A, Tritschler HJ, Moeller W et al. Cataract development in diabetic sand rats treated with alpha-lipoic acid and its gamma-linolenic acid conjugate. Diabetes Metab Res Rev 2001; 17: 44–50.

    Article  CAS  Google Scholar 

  30. Langley-Evans SC, Phillips GJ, Jackson AA . Fetal exposure to low protein maternal diet alters the susceptibility of young adult rats to sulfur dioxide-induced lung injury. J Nutr 1997; 127: 202–209.

    Article  CAS  Google Scholar 

  31. Velthuis-Te Wierik EJ, Van Den Berg H, Weststrate JA, Van Het Hof KH, de Graaf C . Consumption of reduced-fat products: effects on parameters of anti-oxidative capacity. Eur J Clin Nutr 1996; 50: 214–219.

    CAS  PubMed  Google Scholar 

  32. Wu G, Fang YZ, Yang S, Lupton JR, Turner ND . Glutathione metabolism and its implications for health. J Nutr 2004; 134: 489–492.

    Article  CAS  Google Scholar 

  33. Yoshida K, Hirokawa J, Tagami S, Kawakami Y, Urata Y, Kondo T . Weakened cellular scavenging activity against oxidative stress in diabetes mellitus: regulation of glutathione synthesis and efflux. Diabetologia 1995; 8: 201–210.

    Article  Google Scholar 

  34. Sies H . Oxidative stress: oxidants and antioxidants. Exp Physiol 1997; 82: 291–295.

    Article  CAS  Google Scholar 

  35. Awasthi YC, Garg HS, Dao DD, Partridge CA, Srivastava SK . Enzymatic conjugation of erythrocyte glutathione with 1-chloro-2,4-dinitrobenzene: the fate of glutathione conjugate in erythrocytes and the effect of glutathione depletion on hemoglobin. Blood 1981; 58: 733–738.

    CAS  PubMed  Google Scholar 

  36. Cazzola R, Rondanelli M, Russo-Volpe S, Ferrari E, Cestaro B . Decreased membrane fluidity and altered susceptibility to peroxidation and lipid composition in over-weight and obese female erythrocytes. J Lipid Res 2004; 45: 1846–1851.

    Article  CAS  Google Scholar 

  37. Fabris R, Mingrone G, Milan G, Manco M, Granzotto M, Dalla Pozza A et al. Further lowering of muscle lipid oxidative capacity in obese subjects after biliopancreatic diversion. J Clin Endocrinol Metab 2004; 89: 1753–1759.

    Article  CAS  Google Scholar 

  38. Ozata M, Mergen M, Oktenli C, Aydin A, Sanisoglu SY, Bolu E et al. Increased oxidative stress and hypozincemia in male obesity. Clin Biochem 2002; 35: 627–631.

    Article  CAS  Google Scholar 

  39. Vincent HK, Powers SK, Stewart DJ, Shanely RA, Demirel H, Naito H . Obesity is associated with increased myocardial oxidative stress. Int J Obes Relat Metab Disord 1999; 23: 67–74.

    Article  CAS  Google Scholar 

  40. Sattler W, Malle E, Kostner GM . Methodological approaches for assessing lipid and protein oxidation and modification in plasma and isolated lipoproteins. Methods Mol Biol 1998; 110: 67–191.

    Google Scholar 

  41. Kunst M, Sies H, Akerboom TPM . S-(4-Azidophenacyl) [35S] glutathione photoaffinity labeling of rat liver plasma membrane-associated proteins. Biochim Biophys Acta 1989; 982: 15–23.

    Article  CAS  Google Scholar 

  42. Lindquist RN, Lynn Jr JL, Lienhard GE . Possible transition-state analogs for ribonuclease. The complexes of uridine with oxovanadium(IV) ion and vanadium(V) ion. J Am Chem Soc 1973; 95: 8762–8768.

    Article  CAS  Google Scholar 

  43. Onaran I, Ozaydin A, Gultepe M, Sultuybek G . Transport of glutathione conjugate in erythrocytes from aged subjects and susceptibility to oxidative stress following inhibition of the glutathione S-conjugate pump. Mech Ageing Dev 1998; 103: 195–207.

    Article  CAS  Google Scholar 

  44. Weiss DJ . Susceptibility of canine, feline and human erythrocytes to oxidant-mediated injury. Vet Clin Pathol 1988; 17: 75–78.

    Article  CAS  Google Scholar 

  45. Tavazzi B, Di Pierro D, Amorini AM, Fazzina G, Tuttobene M, Giardina B et al. Energy metabolism and lipid peroxidation of human erythrocytes as a function of increased oxidative stress. Eur J Biochem 2000; 267: 684–689.

    Article  CAS  Google Scholar 

  46. Zou CG, Agar NS, Jones GL . Chlorodinitrobenzene-mediated damage in the human erythrocyte membrane leads to hemolysis. Life Sci 2002; 1: 35–746.

    Google Scholar 

  47. Beguinot F, Tramontano D, Duilio C, Formisano S, Beguinot L, Mattioli P et al. Alteration of erythrocyte membrane lipid fluidity in human obesity. J Clin Endocrinol Metab 1985; 60: 1226–1230.

    Article  CAS  Google Scholar 

  48. Daly SE, Inch RW, Tustanoff ER . Amino acid transport in multidrug-resistant Chinese hamster ovary cells. Biochem Int 1992; 27: 301–310.

    CAS  PubMed  Google Scholar 

  49. Hofmann M, Mainka P, Tritschler H, Fuchs J, Zimmer G . Decrease of red cell membrane fluidity and -SH groups due to hyperglycemic conditions is counteracted by alpha-lipoic acid. Arch Biochem Biophys 1995; 324: 85–92.

    Article  CAS  Google Scholar 

  50. Al-Makdissy N, Younsi M, Pierre S, Ziegler O, Donner M . Sphingomyelin/cholesterol ratio: an important determinant of glucose transport mediated by GLUT-1 in 3T3-L1 preadipocytes. Cell Signal 2003; 5: 1019–1030.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I Onaran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ozaydin, A., Onaran, I., Yeşim, T. et al. Increased glutathione conjugate transport: a possible compensatory protection mechanism against oxidative stress in obesity?. Int J Obes 30, 134–140 (2006). https://doi.org/10.1038/sj.ijo.0803108

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.ijo.0803108

Keywords

This article is cited by

Search

Quick links