Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Paper
  • Published:

Role of energy charge and AMP-activated protein kinase in adipocytes in the control of body fat stores

Abstract

As indicated by in vitro studies, both lipogenesis and lipolysis in adipocytes depend on the cellular ATP levels. Ectopic expression of mitochondrial uncoupling protein 1 (UCP1) in the white adipose tissue of the aP2-Ucp1 transgenic mice reduced obesity induced by genetic or dietary manipulations. Furthermore, respiratory uncoupling lowered the cellular energy charge in adipocytes, while the synthesis of fatty acids (FA) was inhibited and their oxidation increased. Importantly, the complex metabolic changes triggered by ectopic UCP1 were associated with the activation of AMP-activated protein kinase (AMPK), a metabolic master switch, in adipocytes. Effects of several typical treatments that reduce adiposity, such as administration of leptin, β-adrenoceptor agonists, bezafibrate, dietary n-3 polyunsaturated FA or fasting, can be compared with a phenotype of the aP2-Ucp1 mice. These situations generally lead to the upregulation of mitochondrial UCPs and suppression of the cellular energy charge and FA synthesis in adipocytes. On the other hand, FA oxidation is increased. Moreover, it has been shown that AMPK in adipocytes can be activated by adipocyte-derived hormones leptin and adiponectin, and also by insulin-sensitizes thiazolidinediones. Thus, it is evident that metabolism of adipose tissue itself is important for the control of body fat content and that the cellular energy charge and AMPK are involved in the control of lipid metabolism in adipocytes. The reciprocal link between synthesis and oxidation of FA in adipocytes represents a prospective target for the new treatment strategies aimed at reducing obesity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Kopelman PG . Obesity as a medical problem. Nature 2000; 404: 635–643.

    Article  CAS  PubMed  Google Scholar 

  2. Leibel RL, Rosenbaum M, Hirsch J . Changes in energy expenditure resulting from altered body weight. N Engl J Med 1995; 332: 621–628.

    CAS  PubMed  Google Scholar 

  3. Crescenzo R, Samec S, Antic V, Rohner-Jeanrenaud F, Seydoux J, Montani JP, Dulloo AG . A role for suppressed thermogenesis favoring catch-up fat in the pathophysiology of catch-up growth. Diabetes 2003; 52: 1090–1097.

    CAS  PubMed  Google Scholar 

  4. Frayn KN . The glucose–fatty acid cycle: a physiological perspective. Biochem Soc Trans 2003; 31: 1115–1119.

    CAS  PubMed  Google Scholar 

  5. Arner P . Obesity—a genetic disease of adipose tissue? Br J Nutr 2000; 83 (Suppl 1): S9–S16.

    CAS  PubMed  Google Scholar 

  6. Kopecky J, Rossmeisl M, Flachs P, Bardova K, Brauner P . Mitochondrial uncoupling and lipid metabolism in adipocytes. Biochem Soc Trans 2001; 29: 791–797.

    CAS  PubMed  Google Scholar 

  7. Rossmeisl M, Rim JS, Koza RA, Kozak LP . Variation in type 2 diabetes-related traits in mouse strains susceptible to diet-induced obesity. Diabetes 2003; 52: 1958–1966.

    CAS  PubMed  Google Scholar 

  8. Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ, Sole J, Nichols A, Ross JS, Tartaglia LA, Chen H . Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest 2003; 112: 1821–1830.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Perseghin G, Petersen K, Shulman GI . Cellular mechanism of insulin resistance: potential links with inflammation. Int J Obes Relat Metab Disord 2003; 27 (Suppl 3): S6–S11.

    CAS  PubMed  Google Scholar 

  10. Gavrilova O, Marcus-Samuels B, Graham D, Kim JK, Shulman GI, Castle AL, Vinson C, Eckhaus M, Reitman ML . Surgical implantation of adipose tissue reverses diabetes in lipoatrophic mice. J Clin Invest 2000; 105: 271–278.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Moitra J, Mason MM, Olive M, Krylov D, Gavrilova O, Marcus-Samuels B, Feigenbaum L, Lee E, Aoyama T, Eckhaus M, Reitman ML, Vinson C . Life without white fat: a transgenic mouse. Genes Dev 1998; 12: 3168–3181.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Kim JK, Gavrilova O, Chen Y, Reitman ML, Shulman GI . Mechanism of insulin resistance in A-ZIP/F-1 fatless mice. J Biol Chem 2000; 275: 8456–8460.

    CAS  PubMed  Google Scholar 

  13. Yu C, Chen Y, Cline GW, Zhang D, Zong H, Wang Y, Bergeron R, Kim JK, Cushman SW, Cooney GJ, Atcheson B, White MF, Kraegen EW, Shulman GI . Mechanism by which fatty acids inhibit insulin activation of insulin receptor substrate-1 (IRS-1)-associated phosphatidylinositol 3-kinase activity in muscle. J Biol Chem 2002; 277: 50230–50236.

    CAS  PubMed  Google Scholar 

  14. Frayn KN, Summers LKM . Substrate fluxes in skeletal muscle and white adipose tissue and their importance in the development of obesity. In: Kopelman PG, Stock MJ (eds). Clinical Obesity. Blackwell Science Ltd: Oxford; 1998. pp 129–157.

    Google Scholar 

  15. Fasshauer M, Paschke R . Regulation of adipocytokines and insulin resistance. Diabetologia 2003; 46: 1594–1603.

    CAS  PubMed  Google Scholar 

  16. Guerre-Millo M . Extending the glucose/fatty acid cycle: a glucose/adipose tissue cycle. Biochem Soc Trans 2003; 31: 1161–1164.

    CAS  PubMed  Google Scholar 

  17. Rognstad R, Katz J . The effect of 2,4-dinitrophenol on adipose-tissue metabolism. Biochem J 1969; 111: 431–444.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Huber CT, Duckworth WC, Solomon SS . The reversible inhibition by carbonyl cyanide m-chlorophenyl hydrazone of epinephrine-stimulated lipolysis in perifused isolated fat cells. Biochim Biophys Acta 1981; 666: 462–467.

    CAS  PubMed  Google Scholar 

  19. Kopecky J, Clarke G, Enerback S, Spiegelman B, Kozak LP . Expression of the mitochondrial uncoupling protein gene from the aP2 gene promoter prevents genetic obesity. J Clin Invest 1995; 96: 2914–2923.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Kopecky J, Hodny Z, Rossmeisl M, Syrovy I, Kozak LP . Reduction of dietary obesity in the aP2-Ucp transgenic mice: physiology and adipose tissue distribution. Am J Physiol 1996; 270: E768–E775.

    CAS  PubMed  Google Scholar 

  21. Kopecky J, Rossmeisl M, Hodny Z, Syrovy I, Horakova M, Kolarova P . Reduction of dietary obesity in the aP2-Ucp transgenic mice: mechanism and adipose tissue morphology. Am J Physiol 1996; 270: E776–E786.

    CAS  PubMed  Google Scholar 

  22. Stefl B, Janovska A, Hodny Z, Rossmeisl M, Horakova M, Syrovy I, Bemova J, Bendlova B, Kopecky J . Brown fat is essential for cold-induced thermogenesis but not for obesity resistance in aP2-Ucp mice. Am J Physiol 1998; 274: E527–E533.

    CAS  PubMed  Google Scholar 

  23. Rossmeisl M, Barbatelli G, Flachs P, Brauner P, Zingaretti MC, Marelli M, Janovska P, Horakova M, Syrovy I, Cinti S, Kopecky J . Expression of the uncoupling protein 1 from the aP2 gene promoter stimulates mitochondrial biogenesis in unilocular adipocytes in vivo. Eur J Biochem 2002; 269: 1–10.

    Google Scholar 

  24. Baumruk F, Flachs P, Horakova M, Floryk D, Kopecky J . Transgenic UCP1 in white adipocytes modulates mitochondrial membrane potential. FEBS Lett 1999; 444: 206–210.

    CAS  PubMed  Google Scholar 

  25. Flachs P, Novotny J, Baumruk F, Bardova K, Bourova L, Miksik I, Sponarova J, Svoboda P, Kopecky J . Impaired noradrenaline-induced lipolysis in white fat of aP2-Ucp1 transgenic mice is associated with changes in G-protein levels. Biochem J 2002; 364: 369–376.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Rossmeisl M, Syrovy I, Baumruk F, Flachs P, Janovska P, Kopecky J . Decreased fatty acid synthesis due to mitochondrial uncoupling in adipose tissue. FASEB J 2000; 14: 1793–1800.

    CAS  PubMed  Google Scholar 

  27. Matejkova O, Mustard KJ, Sponarova J, Flachs P, Rossmeisl M, Miksik I, Thomason-Hughes M, Hardie DG, Kopecky J . Possible involvement of AMP-activated protein kinase in obesity resistance induced by respiratory uncoupling in white fat. FEBS Lett 2004; 569: 245–248.

    CAS  PubMed  Google Scholar 

  28. Winder WW, Hardie DG . AMP-activated protein kinase, a metabolic master switch: possible roles in type 2 diabetes. Am J Physiol 1999; 277: E1–E10.

    CAS  PubMed  Google Scholar 

  29. Bergeron R, Ren JM, Cadman KS, Moore IK, Perret P, Pypaert M, Young LH, Semenkovich CF, Shulman GI . Chronic activation of AMP kinase results in NRF-1 activation and mitochondrial biogenesis. Am J Physiol Endocrinol Metab 2001; 281: E1340–E1346.

    CAS  PubMed  Google Scholar 

  30. Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, Wu M, Ventre J, Doebber T, Fujii N, Musi N, Hirshman MF, Goodyear LJ, Moller DE . Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest 2001; 108: 1167–1174.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Kim JB, Sarraf P, Wright M, Yao KM, Mueller E, Solanes G, Lowell BB, Spiegelman BM . Nutritional and insulin regulation of fatty acid synthetase and leptin gene expression through ADD1/SREBP1. J Clin Invest 1998; 101: 1–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Sullivan JE, Brocklehurst KJ, Marley AE, Carey F, Carling D, Beri RK . Inhibition of lipolysis and lipogenesis in isolated rat adipocytes with AICAR, a cell-permeable activator of AMP-activated protein kinase. FEBS Lett 1994; 353: 33–36.

    CAS  PubMed  Google Scholar 

  33. Habinowski SA, Witters LA . The effects of AICAR on adipocyte differentiation of 3T3-L1 cells. Biochem Biophys Res Commun 2001; 286: 852–856.

    CAS  PubMed  Google Scholar 

  34. Brand MD, Brindle KM, Buckingham JA, Harper JA, Rolfe DF, Stuart JA . The significance and mechanism of mitochondrial proton conductance. Int J Obes Relat Metab Disord 1999; 23 (Suppl 6): S4–S11.

    CAS  PubMed  Google Scholar 

  35. Pecqueur C, Alves-Guerra MC, Gelly C, Levi-Meyrueis C, Couplan E, Collins S, Ricquier D, Bouillaud F, Miroux B . Uncoupling protein 2: in vivo distribution, induction upon oxidative stress and evidence for translational regulation. J Biol Chem 2001; 276: 8705–8712.

    CAS  PubMed  Google Scholar 

  36. Ricquier D, Bouillaud F . The uncoupling protein homologues: UCP1, UCP2, UCP3, StUCP and AtUCP. Biochem J 2000; 345: 161–179.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Echtay KS, Winkler E, Frischmuth K, Klingenberg M . Uncoupling proteins 2 and 3 are highly active H+ transporters and highly nucleotide sensitive when activated by coenzyme Q (ubiquinone). Proc Natl Acad Sci USA 2001; 98: 1416–1421.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Bottcher H, Furst P . Decreased white fat cell thermogenesis in obese individuals. Int J Obes Relat Metab Disord 1997; 21: 439–444.

    CAS  PubMed  Google Scholar 

  39. Nedergaard J, Golozoubova V, Matthias A, Asadi A, Jacobsson A, Cannon B . UCP1: the only protein able to mediate adaptive non-shivering thermogenesis and metabolic inefficiency. Biochim Biophys Acta 2001; 1504: 82–106.

    CAS  PubMed  Google Scholar 

  40. Merklin RJ . Growth and distribution of human fetal brown fat. Anat Rec 1974; 178: 637–645.

    CAS  PubMed  Google Scholar 

  41. Garruti G, Ricquier D . Analysis of uncoupling protein and its mRNA in adipose tissue deposits of adult humans. Int J Obes Relat Metab Disord 1992; 16: 383–390.

    CAS  PubMed  Google Scholar 

  42. Ricquier D, Nechad M, Mory G . Ultrastructural and biochemical characterization of human brown adipose tissue in pheochromocytoma. J Clin Endocrinol Metab 1982; 54: 803–807.

    CAS  PubMed  Google Scholar 

  43. Oberkofler H, Dallinger G, Liu YM, Hell E, Krempler F, Patsch W . Uncoupling protein gene: quantification of expression levels in adipose tissues of obese and non-obese humans. J Lipid Res 1997; 38: 2125–2133.

    CAS  PubMed  Google Scholar 

  44. Oberkofler H, Liu YM, Esterbauer H, Hell E, Krempler F, Patsch W . Uncoupling protein-2 gene: reduced mRNA expression in intraperitoneal adipose tissue of obese humans. Diabetologia 1998; 41: 940–946.

    CAS  PubMed  Google Scholar 

  45. Collins S, Daniel KW, Petro AE, Surwit RS . Strain-specific response to beta3-adrenergic receptor agonist treatment of diet-induced obesity in mice. Endocrinology 1997; 138: 405–413.

    CAS  PubMed  Google Scholar 

  46. Guerra C, Koza RA, Yamashita H, King KW, Kozak LP . Emergence of brown adipocytes in white fat in mice is under genetic control. Effects on body weight and adiposity. J Clin Invest 1998; 102: 412–420.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Ghorbani M, Himms-Hagen J . Appearance of brown adipocytes in white adipose tissue during CL 316,243-induced reversal of obesity and diabetes in Zucker fa/fa rats. Int J Obes Relat Metab Disord 1997; 21: 465–475.

    CAS  PubMed  Google Scholar 

  48. Himms-Hagen J, Melnyk A, Zingaretti MC, Ceresi E, Barbatelli G, Cinti S . Multilocular fat cells in WAT of CL-316243-treated rats derive directly from white adipocytes. Am J Physiol Cell Physiol 2000; 279: C670–C681.

    CAS  PubMed  Google Scholar 

  49. Koza RA, Hohmann SM, Guerra C, Rossmeisl M, Kozak LP . Synergistic gene interactions control the induction of the mitochondrial uncoupling protein (Ucp1) gene in white fat tissue. J Biol Chem 2000; 275: 34486–34492.

    CAS  PubMed  Google Scholar 

  50. Coulter AA, Bearden CM, Liu X, Koza RA, Kozak LP . Dietary fat interacts with QTLs controlling induction of Pgc-1 alpha and Ucp1 during conversion of white to brown fat. Physiol Genom 2003; 14: 139–147.

    CAS  Google Scholar 

  51. Champigny O, Ricquier D . Evidence from in vitro differentiating cells that adrenoceptor agonists can increase uncoupling protein mRNA level in adipocytes of adult humans: an RT-PCR study. J Lipid Res 1996; 37: 1907–1914.

    CAS  PubMed  Google Scholar 

  52. Digby JE, Montague CT, Sewter CP, Sanders L, Wilkinson WO, O'Rahilly S, Prins JB . Thiazolidinedione exposure increases the expression of uncoupling protein 1 in cultured human preadipocytes. Diabetes 1998; 47: 138–141.

    CAS  PubMed  Google Scholar 

  53. Tiraby C, Tavernier G, Lefort C, Larrouy D, Bouillaud F, Ricquier D, Langin D . Acquirement of brown fat cell features by human white adipocytes. J Biol Chem 2003; 278: 33370–33376.

    CAS  PubMed  Google Scholar 

  54. Puigserver P, Wu Z, Park CW, Graves R, Wright M, Spiegelman BM . A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 1998; 92: 829–839.

    CAS  PubMed  Google Scholar 

  55. Cederberg A, Gronning LM, Ahren B, Tasken K, Carlsson P, Enerback S . FOXC2 is a winged helix gene that counteracts obesity, hypertriglyceridemia, and diet-induced insulin resistance. Cell 2001; 106: 563–573.

    CAS  PubMed  Google Scholar 

  56. Wang YX, Lee CH, Tiep S, Yu RT, Ham J, Kang H, Evans RM . Peroxisome-proliferator-activated receptor delta activates fat metabolism to prevent obesity. Cell 2003; 113: 159–170.

    CAS  PubMed  Google Scholar 

  57. Ceddia RB, William WN, Lima FB, Flandin P, Curi R, Giacobino JP . Leptin stimulates uncoupling protein-2 mRNA expression and Krebs cycle activity and inhibits lipid synthesis in isolated rat white adipocytes. Eur J Biochem 2000; 267: 5952–5958.

    CAS  PubMed  Google Scholar 

  58. Commins SP, Watson PM, Frampton IC, Gettys TW . Leptin selectively reduces white adipose tissue in mice via a UCP1-dependent mechanism in brown adipose tissue. Am J Physiol Endocrinol Metab 2001; 280: E372–E377.

    CAS  PubMed  Google Scholar 

  59. Soukas A, Cohen P, Socci ND, Friedman JM . Leptin-specific patterns of gene expression in white adipose tissue. Genes Dev 2000; 14: 963–980.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhou Y-T, Wang Z-W, Higa M, Newgard CB, Unger RH . Reversing adipocyte differentiation: implications for treatment of obesity. Proc Natl Acad Sci USA 1999; 96: 2391–2395.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Orci L, Cook WS, Ravazzola M, Wang MY, Park BH, Montesano R, Unger RH . Rapid transformation of white adipocytes into fat-oxidizing machines. Proc Natl Acad Sci USA 2004; 101: 2058–2063.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Cabrero A, Llaverias G, Roglans N, Alegret M, Sanchez R, Adzet T, Laguna JC, Vazquez M . Uncoupling protein-3 mRNA levels are increased in white adipose tissue and skeletal muscle of bezafibrate-treated rats. Biochem Biophys Res Commun 1999; 260: 547–556.

    CAS  PubMed  Google Scholar 

  63. Cabrero A, Alegret M, Sanchez RM, Adzet T, Laguna JC, Vazquez M . Bezafibrate reduces mRNA levels of adipocyte markers and increases fatty acid oxidation in primary culture of adipocytes. Diabetes 2001; 50: 1883–1890.

    CAS  PubMed  Google Scholar 

  64. Angel A, Desai KS, Halperin ML . Reduction in adipocyte ATP by lipolytic agents: relation to intracellular free fatty acid accumulation. J Lipid Res 1971; 12: 203–213.

    CAS  PubMed  Google Scholar 

  65. Gong DW, He Y, Karas M, Reitman M . Uncoupling protein-3 is a mediator of thermogenesis regulated by thyroid hormone, beta3-adrenergic agonists, and leptin. J Biol Chem 1997; 272: 24129–24132.

    CAS  PubMed  Google Scholar 

  66. Ho RJ, England R, Meng HC . Effect of glucose on lipolysis and energy metabolism in fat cells. LIFE Sci 1970; 9: 137–150.

    CAS  PubMed  Google Scholar 

  67. Cinti S, Cancello R, Zingaretti MC, Ceresi E, De Matteis R, Giordano A, Himms-Hagen J, Ricquier D . CL316,243 and cold stress induce heterogeneous expression of UCP1 mRNA and protein in rodent brown adipocytes. J Histochem Cytochem 2002; 50: 21–31.

    CAS  PubMed  Google Scholar 

  68. Yoshitomi H, Yamazaki K, Abe S, Tanaka I . Differential regulation of mouse uncoupling proteins among brown adipose tissue, white adipose tissue, and skeletal muscle in chronic beta 3 adrenergic receptor agonist treatment. Biochem Biophys Res Commun 1998; 253: 85–91.

    CAS  PubMed  Google Scholar 

  69. Benhizia F, Hainault I, Serougne C, Lagrande D, Hajduch E, Guichard C, Malewiak MI, Quignard-Boulange A, Lavau M, Griglio S . Effects of fish oil-lard diet on rat plasma lipoproteins, liver FAS, and lipolytic enzymes. Am J Physiol 1994; 267: E975–E982.

    CAS  PubMed  Google Scholar 

  70. Clarke SD . Polyunsaturated fatty acid regulation of gene transcription: a molecular mechanism to improve the metabolic syndrome. J Nutr 2001; 131: 1129–1132.

    CAS  PubMed  Google Scholar 

  71. Hun CS, Hasegawa K, Kawabata T, Kato M, Shimokawa T, Kagawa Y . Increased uncoupling protein 2 mRNA in white adipose tissue, and decrease in leptin, visceral fat, blood glucose, and cholesterol in KK-Ay mice fed with eicosapentaenoic and docosahexaenoic acids in addition to linolenic acid. Biochem Biophys Res Commun 1999; 259: 85–90.

    CAS  PubMed  Google Scholar 

  72. Iritani N, Fukuda H, Tada K . Nutritional regulation of lipogenic enzyme gene expression in rat epididymal adipose tissue. J Biochem (Tokyo) 1996; 120: 242–248.

    CAS  Google Scholar 

  73. Kalderon B, Mayorek N, Berry E, Zevit N, Bar-Tana J . Fatty acid cycling in the fasting rat. Am J Physiol Endocrinol Metab 2000; 279: E221–E227.

    CAS  PubMed  Google Scholar 

  74. Millet L, Vidal H, Andreelli F, Larrouy D, Riou JP, Ricquier D, Laville M, Langin D . Increased uncoupling protein-2 and -3 mRNA expression during fasting in obese and lean humans. J Clin Invest 1997; 100: 2665–2670.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Saggerson ED, Carpenter CA . The effect of malonyl-CoA on overt and latent carnitine acyltransferase activities in rat liver and adipocyte mitochondria. Biochem J 1983; 210: 591–597.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Martin BR, Denton RM . The intracellular localization of enzymes in white-adipose-tissue fat-cells and permeability properties of fat-cell mitochondria. Biochem J 1970; 117: 861–877.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Wang MY, Lee Y, Unger RH . Novel form of lipolysis induced by leptin. J Biol Chem 1999; 274: 17541–17544.

    CAS  PubMed  Google Scholar 

  78. Minokoshi Y, Kim YB, Peroni OD, Fryer LG, Muller C, Carling D, Kahn BB . Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase. Nature 2002; 415: 339–343.

    CAS  PubMed  Google Scholar 

  79. Dulloo AG, Stock MJ, Solinas G, Boss O, Montani JP, Seydoux J . Leptin directly stimulates thermogenesis in skeletal muscle. FEBS Lett 2002; 515: 109–113.

    CAS  PubMed  Google Scholar 

  80. Fryer LG, Parbu-Patel A, Carling D . The anti-diabetic drugs rosiglitazone and metformin stimulate AMP-activated protein kinase through distinct signaling pathways. J Biol Chem 2002; 277: 25226–25232.

    CAS  PubMed  Google Scholar 

  81. Wu X, Motoshima H, Mahadev K, Stalker TJ, Scalia R, Goldstein BJ . Involvement of AMP-activated protein kinase in glucose uptake stimulated by the globular domain of adiponectin in primary rat adipocytes. Diabetes 2003; 52: 1355–1363.

    CAS  PubMed  Google Scholar 

  82. Saha AK, Avilucea PR, Ye JM, Assifi MM, Kraegen EW, Ruderman NB . Pioglitazone treatment activates AMP-activated protein kinase in rat liver and adipose tissue in vivo. Biochem Biophys Res Commun 2004; 314: 580–585.

    CAS  PubMed  Google Scholar 

  83. Guan HP, Li Y, Jensen MV, Newgard CB, Steppan CM, Lazar MA . A futile metabolic cycle activated in adipocytes by antidiabetic agents. Nat Med 2002; 8: 1122–1128.

    CAS  PubMed  Google Scholar 

  84. Tordjman J, Chauvet G, Quette J, Beale EG, Forest C, Antoine B . Thiazolidinediones block fatty acid release by inducing glyceroneogenesis in fat cells. J Biol Chem 2003; 278: 18785–18790.

    CAS  PubMed  Google Scholar 

  85. Tan GD, Debard C, Tiraby C, Humphreys SM, Frayn KN, Langin D, Vidal H, Karpe F . A ‘futile cycle’ induced by thiazolidinediones in human adipose tissue? Nat Med 2003; 9: 811–812.

    CAS  PubMed  Google Scholar 

  86. Ruderman NB, Park H, Kaushik VK, Dean D, Constant S, Prentki M, Saha AK . AMPK as a metabolic switch in rat muscle, liver and adipose tissue after exercise. Acta Physiol Scand 2003; 178: 435–442.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Grant Agency of the Czech Republic (303/02/1220 and 303/03/P127), Grant Agency of the Academy of Sciences of the Czech Republic (KJB5011303), and research project AVOZ 5011922.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Kopecky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rossmeisl, M., Flachs, P., Brauner, P. et al. Role of energy charge and AMP-activated protein kinase in adipocytes in the control of body fat stores. Int J Obes 28 (Suppl 4), S38–S44 (2004). https://doi.org/10.1038/sj.ijo.0802855

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.ijo.0802855

Keywords

This article is cited by

Search

Quick links