Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Paper
  • Published:

Acylation stimulating protein (ASP) acute effects on postprandial lipemia and food intake in rodents

Abstract

BACKGROUND: In vitro studies have shown that acylation stimulating protein (ASP) stimulates triglyceride (TG) synthesis and storage in adipocytes. We have previously demonstrated that intraperitoneal (i.p.) injection of ASP in C57BL/6J mice accelerated TG clearance following an orally-administered fat load as well as reducing postprandial glucose levels.

RESULTS: In the present study, we first examined the effect of i.p. and intracerebroventricular (i.c.v.) injection of ASP on food intake in Sprague–Dawley rats. Intraperitoneal injection resulted in a short-term increase in food intake (maximum increase 29.3% within the first hour, P<0.025) decreasing thereafter as compared to vehicle alone. i.c.v. Administration of a comparable dose of ASP resulted in a similar but delayed increase in food intake with a maximum at 2–4 h, suggesting that the actions of ASP are peripherally mediated. However, there was no significant difference in 24 h food intake with either i.p. or i.c.v. injection. We also examined the effects of ASP on TG clearance in two obese mouse strains with different metabolic profiles: ob/ob (C57BL/6J-Lepob) and db/db (C57BLKS/J-Leprdb). In a crossover design, the response to an oral fat load was determined with and without i.p. injection of exogenous ASP. In ob/ob mice, there was a 44% greater clearance of postprandial TG (area under the curve (AUC)=245±49 control vs 138±43 mg/dl h with ASP; P<0.05 by RM ANOVA). The db/db mice showed a greater response, with a 62% decrease in postprandial TG (AUC=4080±1489 control vs 1540±719 mg/dl h with ASP; P=0.004 by RM ANOVA). In addition there were decreases in postprandial glucose and non-esterified fatty acid (NEFA) levels in response to ASP.

CONCLUSION: These results are the first to report that ASP can increase food intake in rats and also enhance postprandial TG clearance in obese animals. These data therefore support previous in vitro evidence pointing to ASP as a regulator of lipid metabolism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Campfield LA . Metabolic and hormonal controls of food intake: highlights of the last 25 years—1972-1997 Appetite 1997 29: 135–152.

    Article  CAS  Google Scholar 

  2. Campfield LA, Smith FJ, Burn P . Strategies and potential molecular targets for obesity treatment Science 1998 280: 1383–1387.

    Article  CAS  Google Scholar 

  3. Havel PJ, Larsen PJ, Cameron JL . Control of food intake. In: Conn M, Freeman M (eds). Neuroendocrinology in science and medicine Humana Press: Totowa, NJ 2000 335–352.

    Chapter  Google Scholar 

  4. Saleh J, Sniderman AD, Cianflone K . Regulation of plasma fatty acid metabolism Clin Chim Acta 1999 286: 163–180.

    Article  CAS  Google Scholar 

  5. Schwartz MW, Figlewicz DP, Baskin SC, Woods SC, Porte D . Insulin and the central regulation of energy balance: update 1994. In: Negro Vilar A, Underwood LE (eds). Endocrine Reviews Monographs 2. The endocrine pancreas, insulin action, and diabetes The Endocrine Society 1994 81–113.

    Google Scholar 

  6. Schwartz MW, Woods SC, Porte D Jr, Seeley RJ, Baskin DG . Central nervous system control of food intake Nature 2000 404: 661–671.

    Article  CAS  Google Scholar 

  7. Schwartz MW, Figlewicz DP, Baskin DG, Woods SC, Porte D Jr . Insulin in the brain: a hormonal regulator of energy balance Endocr Rev 1992 13: 387–414.

    CAS  PubMed  Google Scholar 

  8. Bruning JC, Gautam D, Burks DJ, Gillette J, Schubert M, Orban PC, Klein R, Krone W, Muller-Wieland D, Kahn CR . Role of brain insulin receptor in control of body weight and reproduction. Science 2000 289: 2122–2125.

    Article  CAS  Google Scholar 

  9. Saleh J, Summers LKM, Cianflone K, Fielding BA, Sniderman AD, Frayn KN . Coordinated release of acylation stimulating protein (ASP) and triacylglycerol clearance by human adipose tissue in vivo in the postprandial period J Lipid Res 1998 39: 884–891.

    CAS  PubMed  Google Scholar 

  10. Havel PJ . Role of adipose tissue in body-weight regulation: mechanisms regulating leptin production and energy balance. [In Process Citation.] Proc Nutr Soc 2000 59: 359–371.

    Article  CAS  Google Scholar 

  11. Wang MY, Lee Y, Unger RH . Novel form of lipolysis induced by leptin J Biol Chem 1999 274: 17541–17544.

    Article  CAS  Google Scholar 

  12. Fruhbeck G, Aguado M, Martinez JA . In vitro lipolytic effect of leptin on mouse adipocytes: evidence for a possible autocrine/paracrine role of leptin Biochem Biophys Res Commun 1997 240: 590–594.

    Article  CAS  Google Scholar 

  13. Ceddia RB, William WN Jr, Lima FB, Curi R . Leptin inhibits insulin-stimulated incorporation of glucose into lipids and stimulates glucose decarboxylation in isolated rat adipocytes J Endocrinol 1998 158: R7–R9.

    Article  CAS  Google Scholar 

  14. Zhang HH, Kumar S, Barnett AH, Eggo MC . Intrinsic site-specific differences in the expression of leptin in human adipocytes and its autocrine effects on glucose uptake J Clin Endocrinol Metab 1999 84: 2550–2556.

    CAS  PubMed  Google Scholar 

  15. Muller G, Ertl J, Gerl M, Preibisch G . Leptin impairs metabolic actions of insulin in isolated rat adipocytes J Biol Chem 1997 272: 10585–10593.

    Article  CAS  Google Scholar 

  16. Fukuda H, Iritani N, Sugimoto T, Ikeda H . Transcriptional regulation of fatty acid synthase gene by insulin/glucose, polyunsaturated fatty acid and leptin in hepatocytes and adipocytes in normal and genetically obese rats Eur J Biochem 1999 260: 505–511.

    Article  CAS  Google Scholar 

  17. Walder K, Filippis A, Clark S, Zimmet P, Collier GR . Leptin inhibits insulin binding in isolated rat adipocytes J Endocrinol 1997 155: R5–R7.

    Article  CAS  Google Scholar 

  18. Mick G, Vanderbloomer T, Fu CL, McCormick K . Leptin does not affect adipocyte glucose metabolism: studies in fresh and cultured adipocytes Metabolism 1998 47: 1360–1365.

    Article  CAS  Google Scholar 

  19. Ranganathan S, Ciaraldi TP, Henry RR, Mudaliar S, Kern PA . Lack of effect of leptin on glucose transport, lipoprotein lipase, and insulin action in adipose and muscle cells Endocrinology 1998 139: 2509–2513.

    Article  CAS  Google Scholar 

  20. Zierath JR, Frevert EU, Ryder JW, Berggren PO, Kahn BB . Evidence against a direct effect of leptin on glucose transport in skeletal muscle and adipocytes Diabetes 1998 47: 1–4.

    Article  CAS  Google Scholar 

  21. Cianflone K, Maslowska M, Sniderman AD . Acylation stimulating protein (ASP), an adipocyte autocrine: new directions Sem Cell Devl Biol 1999 10: 31–41.

    Article  CAS  Google Scholar 

  22. Saleh J, Christou N, Cianflone K . Regional specificity of ASP binding in human adipose tissue Am J Physiol 1999 276: E815–E821.

    CAS  PubMed  Google Scholar 

  23. Van Harmelen V, Reynisdottir S, Cianflone K, Degerman E, Hoffstedt J, Nilsell K, Sniderman A, Arner P . Mechanisms involved in the regulation of free fatty acid release from isolated human fat cells by acylation stimulating protein and insulin J Biol Chem 1999 274: 18243–18251.

    Article  CAS  Google Scholar 

  24. Maslowska M, Sniderman AD, Germinario R, Cianflone K . ASP stimulates glucose transport in cultured human adipocytes Int J Obes Relat Metab Disord 1997 21: 261–266.

    Article  CAS  Google Scholar 

  25. Tao Y, Cianflone K, Sniderman AD, Colby-Germinario SP, Germinario RJ . Acylation-stimulating protein (ASP) regulates glucose transport in the rat L6 muscle cell line Biochim Biophys Acta 1997 1344: 221–229.

    Article  CAS  Google Scholar 

  26. Maslowska M, Vu H, Phelis S, Sniderman AD, Rhode BM, Blank D, Cianflone K . Plasma acylation stimulating protein, adipsin and lipids in non-obese and obese populations Eur J Clin Invest 1999 29: 679–686.

    Article  CAS  Google Scholar 

  27. Charlesworth JA, Peake PW, Campbell LV, Pussell BA, O'Grady S, Tzilopoulos T . The influence of oral lipid loads on acylation stimulating protein (ASP) in healthy volunteers Int J Obes Relat Metab Disord 1998 22: 1096–1102.

    Article  CAS  Google Scholar 

  28. Maslowska M, Scantlebury T, Germinario R, Cianflone K . Acute in vitro production of ASP in differentiated adipocytes J Lipid Res 1997 38: 21–31.

    Google Scholar 

  29. Scantlebury T, Maslowska M, Cianflone K . Chylomicron specific enhancement of Acylation Stimulating Protein (ASP) and precursor protein C3 production in differentiated human adipocytes J Biol Chem 1998 273: 20903–20909.

    Article  CAS  Google Scholar 

  30. Murray I, Sniderman AD, Cianflone K . Enhanced triglyceride clearance with intraperitoneal human acylation stimulating protein (ASP) in C57BI/6 mice Am J Physiol Endocrinol Metab 1999 277: E474–E480.

    Article  CAS  Google Scholar 

  31. Murray I, Sniderman AD, Cianflone K . Mice lacking acylation stimulating protein (ASP) have delayed postprandial triglyceride clearance J Lipid Res 1999 40: 1671–1676.

    CAS  PubMed  Google Scholar 

  32. Murray I, Sniderman AD, Havel PJ, Cianflone K . Acylation stimulating protein (ASP) deficiency alters postprandial and adipose tissue metabolism in male mice J Biol Chem 1999 274: 36219–36225.

    Article  CAS  Google Scholar 

  33. Wetsel RA, Kildsgaard J, Zsigmond E, Liao W, Chan L . Genetic deficiency of Acylation Stimulating Protein (ASP/C3adesArg) does not cause hyperapobetalipoproteinemia in mice J Biol Chem 1999 274: 19429–19433.

    Article  CAS  Google Scholar 

  34. Murray I, Havel PJ, Sniderman AD, Cianflone K . Reduced body weight, adipose tissue, and leptin levels despite increased energy intake in female mice lacking acylation-stimulating protein Endocrinology 2000 141: 1041–1049.

    Article  CAS  Google Scholar 

  35. Barnum SR . Complement biosynthesis in the central nervous system Crit Rev Oral Biol Med 1995 6: 132–146.

    Article  CAS  Google Scholar 

  36. Loeffler DA, Brickman CM, Juneau PL, Perry MF, Pomara N, Lewitt PA . Cerebrospinal fluid C3a increases with age, but does not increase further in Alzheimer's disease Neurobiol Aging 1997 18: 555–557.

    Article  CAS  Google Scholar 

  37. Schupf N, Williams CA, Hugli TE, Cox J . Psychopharmacological activity of anaphylatoxin C3a in rat hypothalamus J Neuroimmunol 1983 5: 305–316.

    Article  CAS  Google Scholar 

  38. Stanley BG, Lanthier D, Leibowitz SF . Multiple brain sites sensitive to feeding stimulation by opioid agonists: a cannula-mapping study Pharmac Biochem Behav 1988 31: 825–832.

    Article  CAS  Google Scholar 

  39. Blevins JE, Havel PJ, Beverly JL, Gietzen DW . Leptin in the anterior piriform cortex affects food intake in rats Nutr Neurosci 1999 2: 357–367.

    Article  CAS  Google Scholar 

  40. Paxinos G, Watson C . The rat brain in stereotaxic coordinates Orlando: Academic Press 2000.

  41. Johnson AK, Epstein AN . The cerebral ventricles as the avenue for the dipsogenic action of intracranial angiotensin Brain Res 1975 86: 399–418.

    Article  CAS  Google Scholar 

  42. Maeda ND, Li H, Lee D, Oliver P, Quarfordt SH, Osada J . Targeted disruption of the apolipoprotein C-III gene in mice results in hypotriglyceridemia and protection from postprandial hypertriglyceridemia J Biol Chem 1994 269: 23610–23616.

    CAS  PubMed  Google Scholar 

  43. Weinstock PH, Bisgaier CL, Aalto-Setala, Radner H, Ramakrishnan R, Levakfrank S, Essenburg AD, Zechner R, Breslow J . Severe hypertriglyceridemia, reduced high density lipoprotein, and neonatal death in lipoprotein lipase knockout mice. Mild hypertriglyceridemia with impaired very low density lipoprotein clearance in heterozygotes J Clin Invest 1995 96: 2555–2568.

    Article  CAS  Google Scholar 

  44. Shimada M, Shimano H, Gotoda T, Yamamoto K, Kawamura M, Inaba T, Yazaki Y . Overexpression of human lipoprotein lipase in transgenic mice. Resistance to diet-induced hypertriglyceridemia and hypercholesterolemia J Biol Chem 1993 268: 17924–17929.

    CAS  PubMed  Google Scholar 

  45. Hugli TE . Structure and function of C3a anaphylatoxin Curr Top Microbiol Immunol 1989 153: 181–208.

    Google Scholar 

  46. Murray I, Parker RA, Kirchgessner TG, Tran J, Zhang ZJ, Westerlund J, Cianflone K . Functional bioactive recombinant acylation stimulating protein is distinct from C3a anaphylatoxin J Lipid Res 1997 38: 2492–2501.

    CAS  PubMed  Google Scholar 

  47. Baldo A, Sniderman AD, St. Luce S, Zhang XJ, Cianflone K . Signal transduction pathway of acylation stimulating protein: involvement of protein kinase C J Lipid Res 1995 36: 1415–1426.

    CAS  PubMed  Google Scholar 

  48. Nishina PM, Lowe S, Wang J, Paigen B . Characterization of plasma lipids in genetically obese mice: the mutants obese, diabetes, fat, tubby, and lethal yellow Metabolism 1994 4: 549–558.

    Article  Google Scholar 

  49. Coleman DL . Obese and diabetes, two mutant genes causing diabetes—obesity syndromes in mice Diabetologia 1978 14: 141–148.

    Article  CAS  Google Scholar 

  50. Rebrin K, Steil GM, Getty L, Bergman RN . Free fatty acid as a link in the regulation of hepatic glucose output by peripheral insulin Diabetes 1995 44: 1038–1045.

    Article  CAS  Google Scholar 

  51. Sindelar DK, Chu CA, Rohlie M, Neal DW, Swift LL, Cherrington AD . The role of fatty acids in mediating the effects of peripheral insulin on hepatic glucose production in the conscious dog Diabetes 1997 46: 187–196.

    Article  CAS  Google Scholar 

  52. Fujiwara T, Okuno A, Yoshioka S, Horikoshi H . Suppression of hepatic gluconeogenesis in long-term Troglitazone treated diabetic KK and C57BL/KsJ-db/db mice Metabolism 1995 44: 486–490.

    Article  CAS  Google Scholar 

  53. Tuman RW, Doisy RJ . The influence of age on the development of hypertriglyceridaemia and hypercholesterolaemia in genetically diabetic mice Diabetologia 1977 13: 7–11.

    Article  CAS  Google Scholar 

  54. Li X, Grundy SM, Patel SB . Obesity in db and ob animals leads to impaired hepatic very low density lipoprotein secretion and differential secretion of apolipoprotein B-48 and B-100 J Lipid Res 1997 38: 1277–1288.

    CAS  PubMed  Google Scholar 

  55. Lowell BB, Napolitano A, Usher P, Dulloo AG, Rosen BS, Spiegelman BM, Flier JS . Reduced adipsin expression in murine obesity: effect of age and treatment with the sympathomimetic-thermogenic drug mixture ephedrine and caffeine Endocrinology 1990 126: 1514–1520.

    Article  CAS  Google Scholar 

  56. Bengtsson G, Olivecrona T . Lipoprotein lipase. Mechanism of product inhibition Eur J Biochem 1980 106: 557–562.

    Article  CAS  Google Scholar 

  57. Posner I, DeSanctis J . Kinetics of product inhibition and mechanisms of lipoprotein lipase activation by apolipoprotein C-II Biochemistry 1987 26: 3711–3717.

    Article  CAS  Google Scholar 

  58. Saxena U, Witte LD, Goldberg IJ . Release of endothelial lipoprotein lipase by plasma lipoproteins and free fatty acids J Biol Chem 1989 264: 4349–4355.

    CAS  PubMed  Google Scholar 

  59. Karpe F, Olivecrona T, Wallidus G, Hamsten A . Lipoprotein lipase in plasma after an oral fat load: relation to free fatty acids J Lipid Res 1992 33: 975–984.

    CAS  PubMed  Google Scholar 

  60. Peterson J, Bihain BE, Bengtsson-Olivecrona G, Deckelbaum RJ, Carpentier YA, Olivecrona T . Fatty acid control of lipoprotein lipase: a link between energy metabolism and lipid transport Proc Natl Acad Sci USA 1990 87: 909–913.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from National Science and Engineering Council of Canada (to KC) and National Institutes of Health Grants DK50129, DK07355, DK35747 and NS33347 and the American Diabetes Association research award (PJH and DWG). We would like to acknowledge Ian Murray for expert technical assistance, Steve Phélis for providing the human ASP and quantitation of human ASP in mouse plasma and Magdalena Maslowska for helpful discussions. KC is a chercheur-boursier of the Fonds des Recherches en Santé du Québec.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K Cianflone.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saleh, J., Blevins, J., Havel, P. et al. Acylation stimulating protein (ASP) acute effects on postprandial lipemia and food intake in rodents. Int J Obes 25, 705–713 (2001). https://doi.org/10.1038/sj.ijo.0801613

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.ijo.0801613

Keywords

This article is cited by

Search

Quick links