Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Volume 5 Issue 6, June 2013

Original Article

  • A novel marine silk fiber (named aneroin) from sea anemone has been discovered, and wet-spun and electrospun silk fibers from purified recombinant aneroins have been successfully fabricated. Aneroin fibers have promising mechanical properties, suggesting that this protein has potential for use as a novel fibrous biomaterial. Its use would expand the applications of silk in the development of multifunctional and bio-inspired materials.

    • Yun Jung Yang
    • Yoo Seong Choi
    • Hyung Joon Cha
    Original Article Open Access

    Advertisement

  • Natural systems employ energy converters in the form of chlorophores or chemical entities to transform light into a mechanical response, which allows them to open and close pores. Inspired by nature, in this work, we used metallic nanoparticles as opto-thermal energy converters to switch thermally responsive polymers incorporated into nanporous membranes to open and close fluid flow.

    • J Rubén Morones-Ramírez
    Original Article Open Access
Top of page ⤴

Review

  • Along with the rapid merge and development of biotechnology and nanotechnology, various DNA nanostructure scaffolds have been designed, characterized and exploited for a range of applications. Particularly, we have seen the evolution of surface-confined DNA probes with rational design from one-dimensional to two-dimensional and then to three-dimensional, which greatly improve our ability to control the density, orientation and passivation of the surface. In this review, we aim to summarize recent progress on the improvement of probe–target recognition properties by introducing DNA nanostructure scaffolds. A range of new strategies have proven to provide significantly enhanced spatial positioning range and accessibility of the probes on surface over previously reported linear structures. We will also describe applications of DNA nanostructure scaffold-based biosensors.

    • Hao Pei
    • Xiaolei Zuo
    • Chunhai Fan
    Review Open Access
Top of page ⤴

Search

Quick links