Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Efficient learning of accurate surrogates for simulations of complex systems

A preprint version of the article is available at arXiv.

Abstract

Machine learning methods are increasingly deployed to construct surrogate models for complex physical systems at a reduced computational cost. However, the predictive capability of these surrogates degrades in the presence of noisy, sparse or dynamic data. We introduce an online learning method empowered by optimizer-driven sampling that has two advantages over current approaches: it ensures that all local extrema (including endpoints) of the model response surface are included in the training data, and it employs a continuous validation and update process in which surrogates undergo retraining when their performance falls below a validity threshold. We find, using benchmark functions, that optimizer-directed sampling generally outperforms traditional sampling methods in terms of accuracy around local extrema even when the scoring metric is biased towards assessing overall accuracy. Finally, the application to dense nuclear matter demonstrates that highly accurate surrogates for a nuclear equation-of-state model can be reliably autogenerated from expensive calculations using few model evaluations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic for automated generation of inexpensive surrogates for complex systems.
Fig. 2: Candidate surrogates for the 2D Rastrigin function, learned with a thin-plate RBF estimator using ‘sparsity’ sampling, a ‘strict’ tolerance and a test metric for validity based on the average graphical distance between the learned surrogate and sampled data.
Fig. 3: Convergence of test score versus model evaluations for different benchmark functions learned with a thin-plate RBF estimator using ‘sparsity’ sampling and a test metric for validity based on the average graphical distance between the learned surrogate and sampled data.
Fig. 4: Candidate surrogates for the 2D Rosenbrock function, learned with a thin-plate RBF estimator using ‘sparsity’ sampling, a ‘loose’ tolerance and a test metric for validity based on the average graphical distance between the learned surrogate and sampled data.
Fig. 5: Candidate surrogates for the 8D Rosenbrock function, learned with a thin-plate RBF estimator using ‘sparsity’ sampling, a ‘loose’ tolerance and a test metric for validity based on the average graphical distance between the learned surrogate and sampled data.
Fig. 6: Candidate surrogates for quark matter equation of state (EOS) demonstrate fidelity of thin-plate RBF with Nelder–Mead solver to capture the complex phase transition (PT).

Similar content being viewed by others

Data availability

The dataset to create the figure plots in the main text and Supplementary Information are available via Zenodo at https://doi.org/10.5281/zenodo.10908462 (ref. 50).

Code availability

The code, as well as the sampled data and learned surrogates, is available via Code Ocean at https://doi.org/10.24433/CO.1152070.v1 (ref. 51).

References

  1. Barros, V. et al. (eds) Climate Change 2014 Impacts, Adaptation, and Vulnerability (Cambridge Univ. Press, 2014).

  2. Wigley, P. et al. Fast machine-learning online optimization of ultra-cold-atom experiments. Sci. Rep. 6, 25890 (2016).

    Article  Google Scholar 

  3. Scheinker, A. & Gessner, S. Adaptive method for electron bunch profile prediction. Phys. Rev. Accel. Beams 18, 102801 (2015).

    Article  Google Scholar 

  4. Noack, M. et al. A kriging-based approach to autonomous experimentation with applications to x-ray scattering. Sci. Rep. 9, 11809 (2019).

    Article  Google Scholar 

  5. Coveney, P. V., Boon, J. P. & Succi, S. Bridging the gaps at the physics–chemistry–biology interface. Philos. Trans. R. Soc. Lond. Ser. A 374, 20160335 (2016).

    Google Scholar 

  6. Hu, S. X. et al. First-principles thermal conductivity of warm-dense deuterium plasmas for inertial confinement fusion applications. Phys. Rev. E 89, 043105 (2014).

    Article  Google Scholar 

  7. Stanton, L. G., Glosli, J. N. & Murillo, M. S. Multiscale molecular dynamics model for heterogeneous charged systems. Phys. Rev. X 8, 021044 (2018).

    Google Scholar 

  8. Brown, E. W., Clark, B. K., DuBois, J. L. & Ceperley, D. M. Path-integral monte carlo simulation of the warm dense homogeneous electron gas. Phys. Rev. Lett. 110, 146405 (2013).

    Article  Google Scholar 

  9. Schmidt, J., Marques, M., Botti, S. & Marques, M. Recent advances and applications of machine learning in solid-state materials science. NPJ Comput. Mater. 5, 83 (2019).

    Article  Google Scholar 

  10. Liu, Y., Zhao, T., Ju, W. & Shi, S. Materials discovery and design using machine learning. J. Materiomics 3, 159–177 (2017).

    Article  Google Scholar 

  11. Lubbers, N. et al. Modeling and scale-bridging using machine learning: nanoconfinement effects in porous media. Sci. Rep. 10, 13312 (2020).

    Article  Google Scholar 

  12. Diaw, A. et al. Multiscale simulation of plasma flows using active learning. Phys. Rev. E 102, 023310 (2020).

    Article  Google Scholar 

  13. Roehm, D. et al. Distributed database kriging for adaptive sampling (D2 KAS). Comput. Phys. Commun. 192, 138–147 (2015).

    Article  Google Scholar 

  14. Coulomb, J.-L., Kobetski, A., Caldora Costa, M., Maréchal, Y. & Jonsson, U. Comparison of radial basis function approximation techniques. COMPEL - Int. J. Comput. Math. Electric. Electron. Eng. 22, 616–629 (2003).

    Article  Google Scholar 

  15. Wu, Y., Wang, H., Zhang, B. & Du, K.-L. Using radial basis function networks for function approximation and classification. ISRN Appl. Math. 2012, 324194 (2012).

    Article  MathSciNet  Google Scholar 

  16. Park, J. & Sandberg, I. W. Universal approximation using radial-basis-function networks. Neural Comput. 3, 246–257 (1991).

    Article  Google Scholar 

  17. McKerns, M., Hung, P. & Aivazis, M. mystic: highly-constrained non-convex optimization and UQ. PyPI http://pypi.python.org/pypi/mystic (2009).

  18. McKerns, M., Strand, L., Sullivan, T. J., Fang, A. & Aivazis, M. Building a framework for predictive science. In Proc. 10th Python in Science Conference (eds van der Walt, S. & Millman, J.) 67–78 (SciPy, 2011).

  19. Rastrigin, L. A. Systems of External Control (Mir, 1974) [in Russian].

  20. Rosenbrock, H. An automatic method for finding the greatest or least value of a function. Comput. J. 3, 175–184 (1960).

    Article  MathSciNet  Google Scholar 

  21. Dixon, L. & Szego, G. in Towards Global Optimisation 2 (eds Dixon, L. C. & Szegö, G. P.) 1–15 (North-Holland, 1978).

  22. Michalewicz, Z. Genetic Algorithms + Data Structures = Evolution Programs (Springer-Verlag, 1992).

  23. Easom, E. A Survey of Global Optimization Techniques. M. Eng. Thesis, Univ. of Louisville (1990).

  24. Lonardoni, D., Tews, I., Gandolfi, S. & Carlson, J. Nuclear and neutron-star matter from local chiral interactions. Phys. Rev. Res. 2, 022033 (2020).

    Article  Google Scholar 

  25. Annala, E., Gorda, T., Kurkela, A., Nättilä, J. & Vuorinen, A. Evidence for quark-matter cores in massive neutron stars. Nat. Phys. 16, 907–910 (2020).

    Article  Google Scholar 

  26. Baym, G. et al. From hadrons to quarks in neutron stars: a review. Rep. Prog. Phys. 81, 056902 (2018).

    Article  MathSciNet  Google Scholar 

  27. Adam, J. et al. Nonmonotonic energy dependence of net-proton number fluctuations. Phys. Rev. Lett. 126, 092301 (2021).

    Article  Google Scholar 

  28. Busza, W., Rajagopal, K. & van der Schee, W. Heavy ion collisions: the big picture and the big questions. Annu. Rev. Nucl. Part. Sci. 68, 339–376 (2018).

    Article  Google Scholar 

  29. Braun-Munzinger, P., Koch, V., Schäfer, T. & Stachel, J. Properties of hot and dense matter from relativistic heavy ion collisions. Phys. Rep. 621, 76–126 (2016).

    Article  MathSciNet  Google Scholar 

  30. Raaijmakers, G. et al. Constraints on the dense matter equation of state and neutron star properties from nicer’s mass-radius estimate of psr j0740+6620 and multimessenger observations. Astrophys. J. Lett. 918, L29 (2021).

    Article  Google Scholar 

  31. Capano, C. D. et al. Stringent constraints on neutron-star radii from multimessenger observations and nuclear theory. Nat. Astron. 4, 625–632 (2020).

    Article  Google Scholar 

  32. Dietrich, T. et al. Multimessenger constraints on the neutron-star equation of state and the Hubble constant. Science 370, 1450–1453 (2020).

    Article  MathSciNet  Google Scholar 

  33. Riley, T. E. et al. A nicer view of psr j0030+0451: millisecond pulsar parameter estimation. Astrophys. J. 887, L21 (2019).

    Article  Google Scholar 

  34. Miller, M. C. et al. Psr j0030+0451 mass and radius from nicer data and implications for the properties of neutron star matter. Astrophys. J. 887, L24 (2019).

    Article  Google Scholar 

  35. Dexheimer, V. Tabulated neutron star equations of state modelled within the chiral mean field model. Publ. Astron. Soc. Aust. https://doi.org/10.1017/pasa.2017.61 (2017).

  36. Abbott, B. et al. Gw170817: Observation of gravitational waves from a binary neutron star inspiral. Phys. Rev. Lett. 119, 161101 (2017).

    Article  Google Scholar 

  37. Typel, S., Oertel, M. & Klähn, T. CompOSE CompStar online supernova equations of state harmonising the concert of nuclear physics and astrophysics compose.obspm.fr. Phys. Part. Nucl. 46, 633–664 (2015).

    Article  Google Scholar 

  38. Schneider, A. S., Constantinou, C., Muccioli, B. & Prakash, M. Akmal–Pandharipande–Ravenhall equation of state for simulations of supernovae, neutron stars and binary mergers. Phys. Rev. C 100, 025803 (2019).

    Article  Google Scholar 

  39. Raithel, C. A., Özel, F. & Psaltis, D. Finite-temperature extension for cold neutron star equations of state. Astrophys. J. 875, 12 (2019).

    Article  Google Scholar 

  40. Glendenning, N. K. Compact Stars: Nuclear Physics, Particle Physics and General Relativity (Springer, 1997).

  41. Hempel, M., Pagliara, G. & Schaffner-Bielich, J. Conditions for phase equilibrium in supernovae, protoneutron and neutron stars. Phys. Rev. D 80, 125014 (2009).

    Article  Google Scholar 

  42. Fischer, T. et al. Core-collapse supernova explosions triggered by a quark-hadron phase transition during the early post-bounce phase. Astrophys. J. Suppl. Ser. 194, 39 (2011).

    Article  Google Scholar 

  43. McLerran, L. & Reddy, S. Quarkyonic matter and neutron stars. Phys. Rev. Lett. 122, 122701 (2019).

    Article  Google Scholar 

  44. Chodos, A., Jaffe, R. L., Johnson, K., Thorn, C. B. & Weisskopf, V. F. New extended model of hadrons. Phys. Rev. D 9, 3471–3495 (1974).

    Article  MathSciNet  Google Scholar 

  45. Schertler, K., Greiner, C., Schaffner-Bielich, J. & Thoma, M. H. Quark phases in neutron stars and a third family of compact stars as signature for phase transitions. Nucl. Phys. A 677, 463–490 (2000).

    Article  Google Scholar 

  46. Rocha, H. On the selection of the most adequate radial basis function. Appl. Math. Model. 33, 1573–1583 (2009).

    Article  Google Scholar 

  47. Rumelhart, D. E., Hinton, G. E., & Williams, R. J. in Parallel Distributed Processing: Explorations in the Microstructure of Cognition (eds Rumelhart, D. E., McClelland, J. L. & the PDP Research Group) (MIT Press, 1987).

  48. Schaback, R. & Wendland, H. Adaptive greedy techniques for approximate solution of large RBF systems. Numer. Algorithms 24, 239–254 (2000).

    Article  MathSciNet  Google Scholar 

  49. Dorvlo, A. S., Jervase, J. A. & Al-Lawati, A. Solar radiation estimation using artificial neural networks. Appl. Energy 71, 307–319 (2002).

    Article  Google Scholar 

  50. Diaw, A., McKerns, M., Sagert, I., Stanton, L. G. & Murillo, M. S. Directed sampling datasets. Zenodo https://doi.org/10.5281/zenodo.10908462 (2024).

  51. Diaw, A., McKerns, M., Sagert, I., Stanton, L. G. & Murillo, M. S. Efficient learning of accurate surrogates for simulations of complex systems. Code Ocean https://doi.org/10.24433/CO.1152070.v1 (2024).

Download references

Acknowledgements

Research supported by Los Alamos National Laboratory under the Laboratory Directed Research and Development programme (project nos. 20190005DR, 20200410DI and 20210116DR), by the Department of Energy Advanced Simulation and Computing under the Beyond Moore’s Law Program and by the Uncertainty Quantification Foundation under the Statistical Learning programme. Triad National Security, LLC operates the Los Alamos National Laboratory for the National Nuclear Security Administration of the US Department of Energy (contract no. 89233218CNA000001). M.S.M. acknowledges support from the National Science Foundation through award PHY-2108505. We thank J. Haack for insightful feedback on the paper. This document is LA-UR-20-24947.

Author information

Authors and Affiliations

Authors

Contributions

A.D., M.M. and M.S.M. conceived the project. M.M. developed the software. A.D., I.S. and M.M. performed simulations and prepared figures. All authors were responsible for the formal analysis.

Corresponding authors

Correspondence to A. Diaw or M. McKerns.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Machine Intelligence thanks Martin Buhmann, André da Silva Schneider and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Table 1 Combined table of convergence and performance tests for benchmark functions

Supplementary information

Supplementary Information

Supplementary tests cases, molecular dynamics tests and method implementation.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diaw, A., McKerns, M., Sagert, I. et al. Efficient learning of accurate surrogates for simulations of complex systems. Nat Mach Intell 6, 568–577 (2024). https://doi.org/10.1038/s42256-024-00839-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42256-024-00839-1

Search

Quick links

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics