Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Potassium isotopic evidence for recycling of surface water into the mantle transition zone

Abstract

Global water cycling involves interactions between Earth’s interior and its surface environment. Geophysical and mineral physics studies have suggested that the mantle transition zone is hydrous, at least locally. However, there are poor constraints on whether water in the transition zone is sourced internally from primordial materials or from Earth’s surface via subduction-related processes. Cenozoic volcanism in Northeast Asia is triggered by hot and wet upwelling flows above the stagnated Pacific slab and has produced mantle transition zone-derived volcanic rocks. Potassium behaves geochemically similarly to water during magmatic processes, and hence can potentially be used to constrain the nature of water in the mantle transition zone. Here we report potassium isotopes in a set of well-characterized Cenozoic volcanic rocks in Northeast Asia. Their K isotope ratios (−0.83‰ to −0.36‰) are lower than primitive mantle (−0.42‰ ± 0.08‰), suggesting crustal potassium inputs and modifications of the mantle transition zone by subducted slab materials. Decoupling of potassium isotopes from radiogenic Sr–Nd–Pb isotopes, combined with a geophysically identified low-resistivity anomaly above the transition zone, requires the input of surficial water from the stagnated subducted slab into the transition zone. This water can then be cycled back to the surface in Northeast Asian volcanics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Three-dimensional schematic diagram of the distribution of Cenozoic volcanism in Northeast Asia.
Fig. 2: Potassium isotopic compositions of samples plotted with indices of magmatic evolution.
Fig. 3: Potassium and radiogenic isotopes systematics of intraplate lavas.
Fig. 4: Potassium isotopes and trace elements systematics of intraplate volcanic rocks.

Similar content being viewed by others

Data availability

The new K isotope data are provided in Supplementary Table 1 and are available via figshare at https://doi.org/10.6084/m9.figshare.25398487 (ref. 53). Referenced data supporting the findings of this study are available in Supplementary Tables 13.

References

  1. Ohtani, E. Water in the mantle. Elements 1, 25–30 (2005).

    Article  CAS  Google Scholar 

  2. Ohtani, E. Hydration and dehydration in Earth’s interior. Annu. Rev. Earth Planet. Sci. 49, 253–278 (2021).

    Article  CAS  Google Scholar 

  3. Yang, J. & Faccenda, M. Intraplate volcanism originating from upwelling hydrous mantle transition zone. Nature 579, 88–91 (2020).

    Article  CAS  Google Scholar 

  4. Dixon, J. E., Leist, L., Langmuir, C. & Schilling, J.-G. Recycled dehydrated lithosphere observed in plume-influenced mid-ocean-ridge basalt. Nature 420, 385–389 (2002).

    Article  CAS  Google Scholar 

  5. Wang, X. C., Wilde, S. A., Li, Q. L. & Yang, Y. N. Continental flood basalts derived from the hydrous mantle transition zone. Nat. Commun. 6, 7700 (2015).

    Article  CAS  Google Scholar 

  6. Schmidt, M. W. & Poli, S. in Treatise on Geochemistry 2nd Edn (eds Holland, H. D. & Turekian, K. K.) Vol. 4, 669–701 (Elsevier, 2014).

  7. Lin, Y., Hu, Q., Meng, Y., Walter, M. & Mao, H. K. Evidence for the stability of ultrahydrous stishovite in Earth’s lower mantle. Proc. Natl Acad. Sci. USA 117, 184–189 (2020).

    Article  CAS  Google Scholar 

  8. Bell, D. R. & Rossman, G. R. Water in Earth’s mantle: the role of nominally anhydrous minerals. Science 255, 1391–1397 (1992).

    Article  CAS  Google Scholar 

  9. Yang, X., Keppler, H. & Li, Y. Molecular hydrogen in mantle minerals. Geochem. Perspect. Lett. 2, 160–168 (2016).

    Article  Google Scholar 

  10. Inoue, T., Wada, T., Sasaki, R. & Yurimoto, H. Water partitioning in the Earth’s mantle. Phys. Earth Planet. Inter. 183, 245–251 (2010).

    Article  CAS  Google Scholar 

  11. Katayama, I., Nakashima, S. & Yurimoto, H. Water content in natural eclogite and implication for water transport into the deep upper mantle. Lithos 86, 245–259 (2006).

    Article  CAS  Google Scholar 

  12. Mookherjee, M., Karki, B. B., Stixrude, L. & Lithgow-Bertelloni, C. Energetics, equation of state, and elasticity of NAL phase: potential host for alkali and aluminum in the lower mantle. Geophys. Res. Lett. 39, L19306 (2012).

    Article  Google Scholar 

  13. Tao, R., Zhang, L., Liu, X., Bader, T. & Fei, Y. Phase relations and formation of K-bearing Al-10 Å phase in the MORB+H2O system: implications for H2O- and K-cycles in subduction zones. Am. Mineral. 102, 1922–1933 (2017).

    Article  Google Scholar 

  14. Teng, F.-Z., Hu, Y., Ma, J.-L., Wei, G.-J. & Rudnick, R. L. Potassium isotope fractionation during continental weathering and implications for global K isotopic balance. Geochim. Cosmochim. Acta 278, 261–271 (2020).

    Article  CAS  Google Scholar 

  15. Hu, Y., Teng, F. Z., Helz, R. T. & Chauvel, C. Potassium isotope fractionation during magmatic differentiation and the composition of the mantle. J. Geophys. Res.: Solid Earth 126, e2020JB021543 (2021).

    Article  CAS  Google Scholar 

  16. Huang, T.-Y. et al. Heterogeneous potassium isotopic composition of the upper continental crust. Geochim. Cosmochim. Acta 278, 122–136 (2020).

    Article  CAS  Google Scholar 

  17. Hu, Y., Teng, F.-Z., Plank, T. & Chauvel, C. Potassium isotopic heterogeneity in subducting oceanic plates. Sci. Adv. 6, eabb2472 (2020).

    Article  CAS  Google Scholar 

  18. Liu, H.-Y., Xue, Y.-Y., Wang, K., Sun, W.-D. & Wang, K. Contributions of slab-derived fluids to ultrapotassic rocks indicated by K isotopes. Lithos 396–397, 106202 (2021).

    Article  Google Scholar 

  19. Liu, H.-Y. et al. Extremely light K in subducted low-T altered oceanic crust: implications for K recycling in subduction zone. Geochim. Cosmochim. Acta 277, 206–223 (2020).

    Article  CAS  Google Scholar 

  20. Sun, Y., Teng, F.-Z., Hu, Y., Chen, X.-Y. & Pang, K.-N. Tracing subducted oceanic slabs in the mantle by using potassium isotopes. Geochim. Cosmochim. Acta 278, 353–360 (2020).

    Article  CAS  Google Scholar 

  21. Xu, W. L. et al. Stagnant slab front within the mantle transition zone controls the formation of Cenozoic intracontinental high-Mg andesites in northeast Asia. Geology 49, 19–24 (2021).

    Article  CAS  Google Scholar 

  22. Xu, Y. et al. Generation of Cenozoic intraplate basalts in the big mantle wedge under eastern Asia. Sci. China Earth Sci. 61, 869–886 (2018).

    Article  CAS  Google Scholar 

  23. Kelbert, A., Schultz, A. & Egbert, G. Global electromagnetic induction constraints on transition-zone water content variations. Nature 460, 1003–1006 (2009).

    Article  CAS  Google Scholar 

  24. Wang, X. et al. Distinct slab interfaces imaged within the mantle transition zone. Nat. Geosci. 13, 822–827 (2020).

    Article  CAS  Google Scholar 

  25. Ohtani, E. & Zhao, D. The role of water in the deep upper mantle and transition zone: dehydration of stagnant slabs and its effects on the big mantle wedge. Russ. Geol. Geophys. 50, 1073–1078 (2009).

    Article  Google Scholar 

  26. Xu, W. L. et al. Evolution of western Pacific subduction zones: constraints from accretionary complexes in NE Asian continental margin. Geol. Rev. 68, 1–17 (2022).

    Google Scholar 

  27. Xia, Q.-K. et al. Water in the upper mantle and deep crust of eastern China: concentration, distribution and implications. Natl Sci. Rev. 6, 125–144 (2019).

    Article  CAS  Google Scholar 

  28. Zeng, H. et al. Ab initio calculation of equilibrium isotopic fractionations of potassium and rubidium in minerals and water. ACS Earth Space Chem. 3, 2601–2612 (2019).

    Article  CAS  Google Scholar 

  29. Wang, Z. Z., Teng, F. Z., Busigny, V. & Liu, S. A. Evidence from HP/UHP metasediment for recycling of isotopically heterogeneous potassium into the mantle. Am. Mineral. 18, 350–356 (2021).

    Google Scholar 

  30. Hu, Y., Teng, F.-Z. & Chauvel, C. Potassium isotopic evidence for sedimentary input to the mantle source of Lesser Antilles lavas. Geochim. Cosmochim. Acta 295, 98–111 (2021).

    Article  CAS  Google Scholar 

  31. Wang, Z. Z., Teng, F. Z., Prelević, D., Liu, S. A. & Zhao, Z. Potassium isotope evidence for sediment recycling into the orogenic lithospheric mantle. Geochem. Perspect. Lett. 18, 43–47 (2021).

    Article  Google Scholar 

  32. Labanieh, S., Chauvel, C., Germa, A. & Quidelleur, X. Martinique: a clear case for sediment melting and slab dehydration as a function of distance to the trench. J. Petrol. 53, 2441–2464 (2012).

    Article  CAS  Google Scholar 

  33. Piani, L. et al. Earth’s water may have been inherited from material similar to enstatite chondrite meteorites. Science 369, 1110–1113 (2020).

    Article  CAS  Google Scholar 

  34. Alexander, C. M. O. D. et al. The provenances of asteroids, and their contributions to the volatile inventories of the terrestrial planets. Science 337, 721–723 (2012).

    Article  CAS  Google Scholar 

  35. Zhao, C. et al. Potassium isotopic compositions of enstatite meteorites. Meteorit. Planet. Sci. 55, 1404–1417 (2019).

    Article  Google Scholar 

  36. Nie, N. X. et al. Imprint of chondrule formation on the K and Rb isotopic compositions of carbonaceous meteorites. Sci. Adv. 7, eabl3929 (2021).

    Article  CAS  Google Scholar 

  37. Ku, Y. & Jacobsen, S. B. Potassium isotope anomalies in meteorites inherited from the protosolar molecular cloud. Sci. Adv. 6, eabd0511 (2020).

    Article  CAS  Google Scholar 

  38. Schmidt, M. W. Experimental constraints on recycling of potassium from subducted oceanic crust. Science 272, 1927 (1996).

    Article  CAS  Google Scholar 

  39. Kessel, R., Schmidt, M. W., Ulmer, P. & Pettke, T. Trace element signature of subduction-zone fluids, melts and supercritical liquids at 120–180 km depth. Nature 437, 724–727 (2005).

    Article  CAS  Google Scholar 

  40. Parendo, C. A., Jacobsen, S. B., Kimura, J.-I. & Taylor, R. N. Across-arc variations in K-isotope ratios in lavas of the Izu arc: evidence for progressive depletion of the slab in K and similarly mobile elements. Earth Planet. Sci. Lett. 578, 117291 (2022).

    Article  CAS  Google Scholar 

  41. Inoue, T., Irifune, T., Yurimoto, H. & Miyagi, I. Decomposition of K-amphibole at high pressures and implications for subduction zone volcanism. Phys. Earth Planet. Inter. 107, 221–231 (1998).

    Article  CAS  Google Scholar 

  42. Tschauner, O. et al. Ice-VII inclusions in diamonds: evidence for aqueous fluid in Earth’s deep mantle. Science 359, 1136–1139 (2018).

    Article  CAS  Google Scholar 

  43. Li, S. et al. Deep origin of Cenozoic volcanoes in Northeast China revealed by 3-D electrical structure. Sci. China Earth Sci. 63, 533–547 (2020).

    Article  CAS  Google Scholar 

  44. Wessel, P. et al. The generic mapping tools version 6. Geochem. Geophys. Geosyst. 20, 5556–5564 (2019).

    Article  Google Scholar 

  45. Rudnick, R. L. & Gao, S. in Treatise on Geochemistry 2nd Edn (eds Holland, H. D. & Turekian, K. K.) Vol. 4, 1–51 (Elsevier, 2014).

  46. Taylor, S. R. & McLennan, S. M. The Continental Crust: Its Composition and Evolution vol. 94 (Blackwell Scientific Publications, 1985).

  47. Gale, A., Dalton, C. A., Langmuir, C. H., Su, Y. J. & Schilling, J. G. The mean composition of ocean ridge basalts. Geochem. Geophys. Geosyst. 14, 489–518 (2013).

    Article  CAS  Google Scholar 

  48. Workman, R. K. & Hart, S. R. Major and trace element composition of the depleted MORB mantle (DMM). Earth Planet. Sci. Lett. 231, 53–72 (2005).

    Article  CAS  Google Scholar 

  49. Palme, H. & O’Neill, H. S. C. in Treatise on Geochemistry 2nd Edn (eds Holland, H. D. & Turekian, K. K.) Vol. 3, 1–39 (Elsevier, 2014).

  50. Hauff, F., Hoernle, K. & Schmidt, A. Sr–Nd–Pb composition of Mesozoic Pacific oceanic crust (site 1149 and 801, ODP leg 185): implications for alteration of ocean crust and the input into the Izu–Bonin–Mariana subduction system. Geochem. Geophys. Geosyst. 4, 8913 (2003).

    Article  Google Scholar 

  51. Xu, Y.-K. et al. Potassium isotopic compositions of international geological reference materials. Chem. Geol. 513, 101–107 (2019).

    Article  CAS  Google Scholar 

  52. Hu, Y., Chen, X.-Y., Xu, Y.-K. & Teng, F.-Z. High-precision analysis of potassium isotopes by HR-MC-ICPMS. Chem. Geol. 493, 100–108 (2018).

    Article  CAS  Google Scholar 

  53. Xing, K.-C. et al. Potassium isotopic evidence for recycling of surface water into the mantle transition zone. figshare https://doi.org/10.6084/m9.figshare.25398487 (2024).

Download references

Acknowledgements

We thank Z.-D. Liu, Q.-Y. Hu, X.-Z. Yang and Q.-K. Xia for their stimulating discussion and R. S. Sletten for his editing. T.-Y. Huang, Y. Hu and X.-Y. Chen are thanked for their help in the K isotope analytical work. This work was financially supported by the National Natural Science Foundation of China (grant 42130302 to W.-L.X.), the National Key R&D Program of China (grant number 2022YFF0801002 to F.W.), the National Natural Science Foundation of China (grant 42022013 to F.W.), the Program for Jilin University Science and Technology Innovative Research Team (number 2021-TD-05 to W.-L.X.) and the Graduate Innovation Fund of Jilin University (grant 2022021 to K.-C. X.).

Author information

Authors and Affiliations

Authors

Contributions

F.W. and W.-L.X.: conceptualization. K.-C.X.: carrying out experiments, data curation, writing—original draft preparation. F.W., F.-Z.T., W.-L.X., Y.-N.W. and D.-B.Y.: writing—reviewing and editing. Y.-N.W.: visualization. H.-L.L. and Y.-C.W.: advised on water and K behaviour in the deep mantle.

Corresponding authors

Correspondence to Feng Wang or Wen-Liang Xu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Geoscience thanks Jeffrey Park, Kun Wang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Alison Hunt, in collaboration with the Nature Geoscience team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Plots of K2O content (a) and δ41K (b-f) versus chemical weathering proxies for the intraplate lavas from the Northeast Asia.

Published data for the different lavas18,20,30,40 and different saprolites profile14 are plot for comparison (ndiabase= 10, ngranite = 19). δ41K error bars indicate 95% c.i. of the mean. When not seen, they are smaller than the sample symbols. LOI: loss-on-ignition; CIA: chemical index of alteration.

Extended Data Fig. 2 Plots of δ41K versus MgO content (a), Mg# (b), and Ba/Sr (c) for the intraplate volcanic rocks from the RFE.

δ41K error bars indicate 95% c.i. of the mean.

Supplementary information

Supplementary Information

Supplementary Tables 1–3.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xing, KC., Wang, F., Teng, FZ. et al. Potassium isotopic evidence for recycling of surface water into the mantle transition zone. Nat. Geosci. (2024). https://doi.org/10.1038/s41561-024-01452-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41561-024-01452-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing