Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Insight into silicate-glass corrosion mechanisms

Abstract

The remarkable chemical durability of silicate glass makes it suitable for a wide range of applications. The slowdown of the aqueous glass corrosion kinetics that is frequently observed at long time is generally attributed to chemical affinity effects (saturation of the solution with respect to silica). Here, we demonstrate a new mechanism and highlight the impact of morphological transformations in the alteration layer on the leaching kinetics. A direct correlation between structure and reactivity is revealed by coupling the results of several structure-sensitive experiments with numerical simulations at mesoscopic scale. The sharp drop in the corrosion rate is shown to arise from densification of the outer layers of the alteration film, leading to pore closure. The presence of insoluble elements in the glass can inhibit the film restructuring responsible for this effect. This mechanism may be more broadly applicable to silicate minerals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Glass alteration kinetics.
Figure 2: Dye penetration into the gel in sample 0Zr.
Figure 3: Small-angle X-ray scattering.
Figure 4: Neutron scattering with contrast variation.
Figure 5: Scanning transmission electron microscopy of sample 0Zr at the end of alteration.
Figure 6: Monte Carlo simulation of the gel layer.

Similar content being viewed by others

References

  1. Lasaga, A. C., Soler, J. M., Gabor, J., Burch, T. E. & Nagy, K. L. Chemical weathering rate laws and global geochemical cycles. Geochim. Cosmochim. Acta 58, 2361–2386 (1994).

    Article  CAS  Google Scholar 

  2. Nugent, M. A., Brantley, S. L., Pantano, C. G. & Maurice, P. A. The influence of natural mineral coating on feldspar wheathering. Nature 395, 588–591 (1998).

    Article  CAS  Google Scholar 

  3. Kump, L., Brantley, S. L. & Arthur, M. A. Chemical weathering, atmospheric CO2 and climate. Earth Planet. Sci. Rev. 28, 611–667 (2000).

    Article  CAS  Google Scholar 

  4. Scholze, H. Durability investigation of siliceous man-made mineral fibers: A critical review. Glastechnische Berichte Glass Sci. Tech. 61, 161–171 (1988).

    CAS  Google Scholar 

  5. Filgueras, M. R., Latorre, G. & Hench, L. L. Solution effects on the surface reaction of bioactive glasses. J. Biomed. Mater. Res. 27, 445–453 (1993).

    Article  Google Scholar 

  6. Pisciella, P., Crisucci, S., Karamanov, A. & Pelino, M. Chemical durability of glasses obtained by vitrification of industrial wastes. Waste Management 21, 1–9 (2001).

    Article  CAS  Google Scholar 

  7. Hench, L. L. & Clark, D. E. Physical chemistry of glass surface. J. Non-Cryst. Solids 28, 83–105 (1978).

    Article  CAS  Google Scholar 

  8. Scholze, H. Glass water interactions. J. Non-Cryst. Solids 102, 1–10 (1988).

    Article  CAS  Google Scholar 

  9. Conradt, R. Chemical durability of oxide glasses in aqueous solutions: A review. J. Am. Ceram. Soc. 91, 728–735 (2008).

    Article  CAS  Google Scholar 

  10. Werme, L. O. et al. Chemical corrosion of highly radioactive borosilicate nuclear waste glass under simulated repository conditions. J. Mater. Res. 5, 1130–1146 (1990).

    Article  CAS  Google Scholar 

  11. Abraitis, P. K. et al. The kinetics and mechanisms of simulated British Magnox waste glass dissolution as a function of pH, silicic acid activity, and time in low temperature aqueous systems. Appl. Geochem. 15, 1399–1416 (2000).

    Article  CAS  Google Scholar 

  12. Pierce, E. M. et al. Accelerated weathering of a high-level and pu-bearing lanthanide borosilicate waste glass in a can-in-canister configuration. Appl. Geochem. 22, 1841–1859 (2007).

    Article  CAS  Google Scholar 

  13. Ewing, R. C. in Scientific Basis for Nuclear Waste Management Vol. 1 (ed. McCarthy, J. M.) 57–68 (1978).

    Google Scholar 

  14. Lutze, W., Malow, G., Ewing, R. C., Jercinovic, M. J. & Keil, K. Alteration of basalt glasses: Implications for modelling the long-term stability of nuclear waste glasses. Nature 314, 252–255 (1985).

    Article  CAS  Google Scholar 

  15. Casey, W. H. & Bunker, B. C. Mineral-water interface geochemistry. Rev. Mineral. 23, 397–426 (1990).

    CAS  Google Scholar 

  16. Bunker, B. C. Molecular mechanisms for corrosion of silica and silicate glasses. J. Non-Cryst. Solids 179, 300–308 (1994).

    Article  CAS  Google Scholar 

  17. Alekseyev, V. A., Medvedeva, L. S., Prisyagina, N. I., Meshalkin, S. S. & Balabin, A. I. Change in the dissolution rates of alkali feldspars as a result of secondary mineral precipitation and approach to equilibrium. Geochim. Cosmochim. Acta 61, 1125–1142 (1997).

    Article  CAS  Google Scholar 

  18. Abraitis, P. K., McGrail, B. P., Trivedi, D. P., Livens, F. R. & Vaughan, D. J. Single-pass flow-trough experiments on a simulated waste in alkaline media at 40 C. J. Nucl. Mater. 280, 196–205 (2000).

    Article  CAS  Google Scholar 

  19. Grambow, B. & Muller, R. First-order dissolution rate law and the role of surface layers in glass performance assessment. J. Nucl. Mater. 298, 112–124 (2001).

    Article  CAS  Google Scholar 

  20. Casey, W. H., Westrich, H. R., Banfiled, J. F., Ferruzzi, G. & Arnold, G. W. Leaching and reconstruction at the surfaces of dissolving chain-silicate minerals. Nature 366, 253–256 (1993).

    Article  CAS  Google Scholar 

  21. Tsomaia, N., Brantley, S. L., Hamilton, J. P., Pantano, C. G. & Mueller, K. T. NMR evidence for formation of octahedral and tetrahedral Al and repolymerisation of Si network during dissolution of aluminosilicate glass and crystal. Am. Mineral. 88, 54–67 (2003).

    Article  CAS  Google Scholar 

  22. Grambow, B. Uhlig’s Corrosion Handbook 2nd edn 411–437 (Wiley, 2000).

    Google Scholar 

  23. Barkatt, A., Macedo, P. B., Gibson, B. C. & Montrose, C. J. Modelling of waste performance and system release. Mater. Res. Soc. Symp. Proc. 44, 3–13 (1985).

    Article  CAS  Google Scholar 

  24. Delage, F., Ghaleb, D. & Dussossoy, J. L. A mechanistic model for understanding nuclear waste glass dissolution. J. Nucl. Mater. 190, 191–197 (1992).

    Article  CAS  Google Scholar 

  25. Xing, S. B., Buechele, A. C. & Pegg, I. L. Effect of surface layers on the dissolution of nuclear waste glasses. Mater. Res. Soc. Symp. Proc 333, 541–548 (1994).

    Article  CAS  Google Scholar 

  26. Gin, S., Ribet, I. & Couillard, M. Role and properties of the gel formed during nuclear glass alteration: Importance of gel formation conditions. J. Nucl. Mater. 298, 1–10 (2001).

    Article  CAS  Google Scholar 

  27. Chick, L. A. & Pederson, L. R. The relationship between layer thickness and leach rate for nuclear waste glasses. Mater. Res. Soc. Symp. Proc. 26, 635–642 (1984).

    Article  CAS  Google Scholar 

  28. McGrail, B. P., Icenhower, J. P. & Cordova, E. A. Origins of discrepancies between kinetic rate law theory and experiments in the Na2O–B2O3–SiO2 system. Mater. Res. Soc. Symp. Proc. 713, 537–546 (2002).

    Article  CAS  Google Scholar 

  29. Hodson, M. E. The influence of Fe-rich coatings on the dissolution of anorthite at pH 2.6. Geochim. Cosmochim. Acta 67, 3355–3363 (2003).

    Article  CAS  Google Scholar 

  30. Advocat, T., Jollivet, P., Crovisier, J. L. & Del Nero, M. Long-term alteration mechanisms in water for SON68 radioactive borosilicate glass. J. Nucl. Mater. 298, 55–62 (2001).

    Article  CAS  Google Scholar 

  31. Scheetz, B. E. et al. The role of boron in monitoring the leaching of borosilicate glass waste forms. Mater. Res. Soc. Symp. Proc. 44, 129–134 (1985).

    Article  CAS  Google Scholar 

  32. Galoisy, L., Pelegrin, E., Arrio, M. A., Ildefonse, P. & Calas, G. Evidence for 6-coordinated zirconium in inactive nuclear waste glasses. J. Am. Ceram. Soc 82, 2219–2224 (1999).

    Article  CAS  Google Scholar 

  33. Angeli, F., Gaillard, M., Charpentier, T. & Jollivet, P. Influence of zirconium on the structure of pristine and leached soda-lime borosilicate glasses: Towards a quantitative approach by 17O MQMAS NMR. J. Non-Cryst. Solids 354, 3713–3722 (2008).

    Article  CAS  Google Scholar 

  34. Porod, G. in Small Angle X-ray Scattering (eds Glatter, O. & Kratky, O.) 17–52 (Academic, 1982).

    Google Scholar 

  35. Brunauer, S., Emmett, P. H. & Teller, E. Adsorption of gases in multilmolecular layers. J. Am. Chem. Soc 60, 309–319 (1938).

    Article  CAS  Google Scholar 

  36. Calo, J. M. & Hall, P. J. The applications of small angle scattering techniques to porosity characteristics in carbons. Carbon 42, 1299–1304 (2004).

    Article  CAS  Google Scholar 

  37. Devreux, F., Ledieu, A., Barboux, P. & Minet, Y. Leaching of borosilicate glasses. II. Model and Monte Carlo simulations. J. Non-Cryst. Solids 343, 13–25 (2004).

    Article  CAS  Google Scholar 

  38. Ledieu, A., Devreux, F., Barboux, P., Sicard, L. & Spalla, O. Leaching of borosilicate glasses. I. Experiments. J. Non-Cryst. Solids 343, 3–12 (2004).

    Article  CAS  Google Scholar 

  39. Bourcier, W. L., Pfeiffer, D. W., Knauss, K. G., McKeegan, K. D. & Smith, D. K. A kinetic model for borosilicate glass dissolution affinity of a surface alteration layer. In scientific basis for nuclear waste management. Mater. Res. Soc. Symp. Proc. 176, 209–216 (1990).

    Article  CAS  Google Scholar 

  40. Grambow, B. A general rate equation for nuclear waste glass corrosion. Mater. Res. Soc. Symp. Proc. 44, 15–27 (1985).

    Article  CAS  Google Scholar 

  41. Linard, Y., Advocat, T., Jégou, C. & Richet, P. Thermochemistry of nuclear glasses: Application to weathering studies. J. Non-Cryst. Solids 289, 135–143 (2001).

    Article  CAS  Google Scholar 

  42. Gin, S., Jégou, C., Frugier, P. & Minet, Y. Theoretical consideration on the application of the Aagaard-Helgeson rate law to the dissolution of silicate minerals and glasses. Chem. Geol. 255, 14–24 (2008).

    Article  CAS  Google Scholar 

  43. Chave, T., Frugier, P., Ayral, A. & Gin, S. Solid state diffusion during nuclear glass residual alteration in solution. J. Nucl. Mater. 362, 466–473 (2007).

    Article  CAS  Google Scholar 

  44. Ferrand, K., Abdelouas, A. & Grambow, B. Water diffusion in the simulated French nuclear waste SON 68 contacting silica rich solutions: Experimental and modeling. J. Nucl. Mater. 355, 54–67 (2006).

    Article  CAS  Google Scholar 

  45. Liu, Y. C., Wang, Q. & Lu, L. H. Water confined in nanopores: Its molecular distribution and diffusion at lower density. Chem. Phys. Lett. 381, 210–215 (2003).

    Article  CAS  Google Scholar 

  46. Crovisier, J. L., Advocat, T. & Dussossoy, J. L. Nature and role of natural alteration gels formed on the surface of ancient volcanic glasses (Natural analogs of waste containment glasses). J. Nucl. Mater. 321, 91–109 (2003).

    Article  CAS  Google Scholar 

  47. Casey, H. W., Westrich, H. R., Arnold, G. W. & Banfield, J. F. The surface chemistry of dissolving labradorite feldspar. Geochim. Cosmochim. Acta 53, 821–832 (1989).

    Article  CAS  Google Scholar 

  48. Aagaard, P. & Helgeson, H. C. Thermodynamic and kinetic constraints on reaction rates among minerals and aqueous solutions. I. Theoretical considerations. Am. J. Sci. 282, 237–285 (1982).

    Article  CAS  Google Scholar 

  49. Lasaga, A. C. Fundamental approaches in describing mineral dissolution and precipitation rates. Rev. Mineral. 31, 23–86 (1995).

    CAS  Google Scholar 

  50. Oelkers, E. H. General kinetic description of multioxide silicate mineral and glass dissolution. Geochim. Cosmochim. Acta 65, 3703–3719 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the help of Wahib Saikaly at CP2M (Marseille, France) for the scanning transmission electron microscopy experiments and the assistance of Laurent Dupuy at BiophyResearch (Marseille, France) for the ToF-SIMS experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Devreux.

Supplementary information

Supplementary Information

Supplementary Information (PDF 407 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cailleteau, C., Angeli, F., Devreux, F. et al. Insight into silicate-glass corrosion mechanisms. Nature Mater 7, 978–983 (2008). https://doi.org/10.1038/nmat2301

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2301

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing