Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Six-fold coordinated carbon dioxide VI

Abstract

Under standard conditions, carbon dioxide (CO2) is a simple molecular gas and an important atmospheric constituent, whereas silicon dioxide (SiO2) is a covalent solid, and one of the fundamental minerals of the planet. The remarkable dissimilarity between these two group IV oxides is diminished at higher pressures and temperatures as CO2 transforms to a series of solid phases, from simple molecular to a fully covalent extended-solid V, structurally analogous to SiO2 tridymite. Here, we present the discovery of an extended-solid phase of CO2: a six-fold coordinated stishovite-like phase VI, obtained by isothermal compression of associated CO2-II (refs 1,2) above 50 GPa at 530–650 K. Together with the previously reported CO2-V (refs 3–5) and a-carbonia6, this extended phase indicates a fundamental similarity between CO2 (a prototypical molecular solid) and SiO2 (one of Earth’s fundamental building blocks). We present a phase diagram with a limited stability domain for molecular CO2-I, and suggest that the conversion to extended-network solids above 40–50 GPa occurs via intermediate phases II (refs 1,2), III (refs 7,8) and IV (refs 9,10). The crystal structure of phase VI suggests strong disorder along the c axis in stishovite-like P42/m n m, with carbon atoms manifesting an average six-fold coordination within the framework of s p3 hybridization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Phase diagram of carbon dioxide illustrating the molecular to non-molecular phase transitions to four- and six-fold coordinated carbon atoms.
Figure 2: Raman spectra of carbon dioxide phases at high temperatures and pressures, representing the phase transition from strongly associated phase II to fully extended, stishovite-like phase VI at 600 K and 51 GPa.
Figure 3: Raman mode frequencies of CO2-VI compared with those of other group IV dioxides in rutile structures.
Figure 4: Pressure-dependence of the Raman modes observed in the extended phases of CO2-VI (in blue) and V (in black from ref. 3), overlaid with those of CO2-II (in green) for comparison.
Figure 5: Structural model for CO2-VI based on in situ X-ray diffraction measurements.

Similar content being viewed by others

References

  1. Iota, V. & Yoo, C. S. Phase diagram of carbon dioxide: Evidence for a new associated phase. Phys. Rev. Lett. 86, 5922–5925 (2001).

    Article  CAS  Google Scholar 

  2. Yoo, C. S. et al. Crystal structure of pseudo-six-fold carbon dioxide phase II at high pressures and temperatures. Phys. Rev. B 65, 104103 (2002).

    Article  Google Scholar 

  3. Iota, V., Yoo, C. S. & Cynn, H. Quartzlike carbon dioxide: An optically nonlinear extended solid at high pressures and temperatures. Science 283, 1510–1513 (1999).

    Article  CAS  Google Scholar 

  4. Sera, S., Corazon, C., Chiarotti, G. L., Scandolo, S. & Tossatti, E. Pressure-induced solid carbonates from molecular CO2 by computer simulation. Science 284, 788–790 (1999).

    Article  Google Scholar 

  5. Yoo, C. S. et al. Crystal structure of carbon dioxide at high pressure: “Superhard” polymeric carbon dioxide. Phys. Rev. Lett. 83, 5527–5530 (1999).

    Article  CAS  Google Scholar 

  6. Santoro, M. et al. Amorphous silica-like carbon dioxide. Nature 441, 857–860 (2006).

    Article  CAS  Google Scholar 

  7. Aoki, K., Yamawaki, H., Sakashita, M., Gotoh, Y. & Takemura, K. Crystal structure of the high-pressure phase of solid CO2 . Science 263, 356–358 (1994).

    Article  CAS  Google Scholar 

  8. Olijnyk, H. & Jephcoat, A. P. Vibrational studies on CO2 up to 40 GPa by Raman spectroscopy at room temperature. Phys. Rev. B 57, 879–888 (1998).

    Article  CAS  Google Scholar 

  9. Yoo, C. S., Iota, V. & Cynn, H. Nonlinear carbon dioxide at high pressures and temperatures. Phys. Rev. Lett 86, 444–447 (2001).

    Article  CAS  Google Scholar 

  10. Park, J.-H. et al. Crystal structure of bent carbon dioxide phase IV. Phys. Rev. B 68, 014107 (2003).

    Article  Google Scholar 

  11. Gorelli, F. A., Giordano, V. M., Salvi, P. R. & Bini, R. Linear carbon dioxide in the high-pressure high-temperature crystalline phase IV. Phys. Rev. Lett. 93, 205503 (2004).

    Article  Google Scholar 

  12. Kuchta, B. & Etters, R. Generalized free-energy method used to calculate the high-pressure, high-temperature phase transition in solid CO2 . Phys. Rev. B 47, 14691–14695 (1993).

    Article  CAS  Google Scholar 

  13. Sinclair, W. & Ringwood, A. E. Single crystal analysis of the structure of stishovite. Nature 272, 714–715 (1978).

    Article  CAS  Google Scholar 

  14. Dong, J. et al. Investigation of hardness in tetrahedrally bonded nonmolecular CO2 solids by density-functional theory. Phys. Rev. B 62, 14685–14689 (2000).

    Article  CAS  Google Scholar 

  15. Holm, B., Ahuja, R., Belonoshko, A. & Johansson, B. Theoretical investigation of high pressure phases of carbon dioxide. Phys. Rev. Lett. 85, 1258–1261 (2000).

    Article  CAS  Google Scholar 

  16. Hemley, R. J., Mao, H. K. & Chao, E. C. T. Raman spectrum of natural and synthetic stishovite. Phys. Chem. Minerals 13, 285–290 (1986).

    Article  CAS  Google Scholar 

  17. Mammone, J. F., Nicol, M. & Sharma, S. K. Raman spectra of TiO2-II, TiO2-III, SnO2, and GeO2 at high pressure. J. Phys. Chem. Solids 42, 379 (1981).

    Article  CAS  Google Scholar 

  18. Yoo, C. S. in Science and Technology of High Pressure Vol. 1 (eds Manghnani, M. H., Nellis, W. J. & Nicol, M. F.) 86–89 (Univ. Press, Hyderabad, India, 2000).

    Google Scholar 

  19. Tassone, F., Chiarotti, G. L., Rousseau, R., Scandolo, S. & Tosatti, E. Dimerization of CO2 at high pressure and temperature. ChemPhysChem 6, 1752–1756 (2005).

    Article  CAS  Google Scholar 

  20. Cohen, R. E. in High Pressure Research: Application to Earth and Planetary Sciences (eds Syono, Y. & Manghnani, M. H.) 425 (Terra Scientific, AGU, Washington DC, 1992).

    Google Scholar 

  21. Santillan, J. & Williams, Q. A high-pressure infrared and X-ray study of FeCO3 and MnCO3: comparison with CaMg(CO3)2-dolomite. Phys. Earth Planet. Inter. 143/144, 291–304 (2004).

    Article  Google Scholar 

  22. Harvey, R. P. & Mcsween, H. Y. A possible high-temperature origin for the carbonates in the martian meteorite ALH84001. Nature 382, 49–51 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work has been supported by the LDRD and PDRP programs at the LLNL, University of California, under the auspices of the US-DOE under contract number W-7405-ENG-48. The X-ray work was done by using the High Pressure Collaborating Access Team’s micro-diffraction beamline (16IDB) of the Advanced Photon Source. Use of the HPCAT facility was supported by DOE-BES, DOE-NNSA (CDAC, LLNL, UNLV), NSF, DOD-TACOM and the W.M. Keck Foundation.

Author information

Authors and Affiliations

Authors

Contributions

Project planning: V.I., C.S.Y., samples and Raman measurements: V.I., Z.J., XRD measurements: V.I., C.S.Y., W.E., H.C., data analysis: V.I., C.S.Y., J.H.K.

Corresponding authors

Correspondence to Valentin Iota or Choong-Shik Yoo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figure 1 (PDF 85 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iota, V., Yoo, CS., Klepeis, JH. et al. Six-fold coordinated carbon dioxide VI. Nature Mater 6, 34–38 (2007). https://doi.org/10.1038/nmat1800

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1800

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing