Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Deciphering nociplastic pain: clinical features, risk factors and potential mechanisms

Subjects

Abstract

Nociplastic pain is a mechanistic term used to describe pain that arises or is sustained by altered nociception, despite the absence of tissue damage. Although nociplastic pain has distinct pathophysiology from nociceptive and neuropathic pain, these pain mechanisms often coincide within individuals, which contributes to the intractability of chronic pain. Key symptoms of nociplastic pain include pain in multiple body regions, fatigue, sleep disturbances, cognitive dysfunction, depression and anxiety. Individuals with nociplastic pain are often diffusely tender — indicative of hyperalgesia and/or allodynia — and are often more sensitive than others to non-painful sensory stimuli such as lights, odours and noises. This Review summarizes the risk factors, clinical presentation and treatment of nociplastic pain, and describes how alterations in brain function and structure, immune processing and peripheral factors might contribute to the nociplastic pain phenotype. This article concludes with a discussion of two proposed subtypes of nociplastic pain that reflect distinct neurobiological features and treatment responsivity.

Key points

  • Nociplastic pain was recently endorsed as the third mechanistic descriptor of pain and is characterized by widespread body pain, often co-occurring with fatigue and altered sleep, cognition and mood, as well as multisensory hypersensitivity.

  • Nociplastic pain probably occurs on a continuum and can coexist with nociceptive and/or neuropathic pain.

  • Although the exact cause (or causes) of nociplastic pain remain unknown, female sex, early-life stressors, trauma, poor sleep, heightened somatic awareness and physical inactivity increase the risk for nociplastic pain.

  • Alterations in the central nervous system, particularly in brain regions situated within the default mode, salience and somatosensory networks, have been reported in many chronic pain conditions with nociplastic features.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Central nervous system-mediated features of nociplastic pain.
Fig. 2: Risk factors for nociplastic pain across the lifespan.
Fig. 3: The pathophysiology of nociplastic pain.
Fig. 4: Subtypes of nociplastic pain: top-down and bottom-up.

Similar content being viewed by others

References

  1. Kosek, E. et al. Do we need a third mechanistic descriptor for chronic pain states? Pain 157, 1382–1386 (2016).

    Article  PubMed  Google Scholar 

  2. Maixner, W., Fillingim, R. B., Williams, D. A., Smith, S. B. & Slade, G. D. Overlapping chronic pain conditions: implications for diagnosis and classification. J. Pain 17, T93–T107 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Treede, R. D. et al. Chronic pain as a symptom or a disease: the IASP classification of chronic pain for the International Classification of Diseases (ICD-11). Pain 160, 19–27 (2019).

    Article  PubMed  Google Scholar 

  4. Fitzcharles, M. A. et al. Nociplastic pain: towards an understanding of prevalent pain conditions. Lancet 397, 2098–2110 (2021).

    Article  PubMed  Google Scholar 

  5. Andrews, P., Steultjens, M. & Riskowski, J. Chronic widespread pain prevalence in the general population: a systematic review. Eur. J. Pain 22, 5–18 (2018).

    Article  CAS  PubMed  Google Scholar 

  6. Murphy, A. E., Minhas, D., Clauw, D. J. & Lee, Y. C. Identifying and managing nociplastic pain in individuals with rheumatic diseases: a narrative review. Arthritis Care Res. 75, 2215–2222 (2023).

    Article  Google Scholar 

  7. Dampier, C. et al. AAPT diagnostic criteria for chronic sickle cell disease pain. J. Pain 18, 490–498 (2017).

    Article  PubMed  Google Scholar 

  8. Shtein, R. M. et al. Discordant dry eye disease (An American Ophthalmological Society Thesis). Trans. Am. Ophthalmol. Soc. 114, T4 (2016).

    PubMed  PubMed Central  Google Scholar 

  9. Clauw, D. J. & Hassett, A. L. The role of centralised pain in osteoarthritis. Clin. Exp. Rheumatol. 35, 79–84 (2017).

    PubMed  Google Scholar 

  10. Shraim, M. A., Masse-Alarie, H., Hall, L. M. & Hodges, P. W. Systematic review and synthesis of mechanism-based classification systems for pain experienced in the musculoskeletal system. Clin. J. Pain 36, 793–812 (2020).

    Article  PubMed  Google Scholar 

  11. Shraim, M. A., Masse-Alarie, H. & Hodges, P. W. Methods to discriminate between mechanism-based categories of pain experienced in the musculoskeletal system: a systematic review. Pain 162, 1007–1037 (2021).

    Article  CAS  PubMed  Google Scholar 

  12. Shraim, M. A. et al. Features and methods to discriminate between mechanism-based categories of pain experienced in the musculoskeletal system: a Delphi expert consensus study. Pain 163, 1812–1828 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kosek, E. et al. Chronic nociplastic pain affecting the musculoskeletal system: clinical criteria and grading system. Pain 162, 2629–2634 (2021).

    Article  PubMed  Google Scholar 

  14. Hannan, M. T., Felson, D. T. & Pincus, T. Analysis of the discordance between radiographic changes and knee pain in osteoarthritis of the knee. J. Rheumatol. 27, 1513–1517 (2000).

    CAS  PubMed  Google Scholar 

  15. Vercellini, P. et al. Association between endometriosis stage, lesion type, patient characteristics and severity of pelvic pain symptoms: a multivariate analysis of over 1000 patients. Hum. Reprod. 22, 266–271 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Harris, R. E. et al. Characterization and consequences of pain variability in individuals with fibromyalgia. Arthritis Rheum. 52, 3670–3674 (2005).

    Article  PubMed  Google Scholar 

  17. Berwick, R., Barker, C., Goebel, A. & Guideline Development Group. The diagnosis of fibromyalgia syndrome. Clin. Med. 22, 570–574 (2022).

    Google Scholar 

  18. Choy, E. et al. A patient survey of the impact of fibromyalgia and the journey to diagnosis. BMC Health Serv. Res. 10, 102 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Mayer, T. G. et al. The development and psychometric validation of the central sensitization inventory. Pain Pract. 12, 276–285 (2012).

    Article  PubMed  Google Scholar 

  20. Neblett, R. et al. The Central Sensitization Inventory (CSI): establishing clinically significant values for identifying central sensitivity syndromes in an outpatient chronic pain sample. J. Pain 14, 438–445 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Freynhagen, R., Baron, R., Gockel, U. & Tolle, T. R. painDETECT: a new screening questionnaire to identify neuropathic components in patients with back pain. Curr. Med. Res. Opin. 22, 1911–1920 (2006).

    Article  PubMed  Google Scholar 

  22. Soni, A. et al. Central sensitization in knee osteoarthritis: relating presurgical brainstem neuroimaging and painDETECT-based patient stratification to arthroplasty outcome. Arthritis Rheumatol. 71, 550–560 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Bailly, F. et al. Part of pain labelled neuropathic in rheumatic disease might be rather nociplastic. RMD Open 6, e001326 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Wolfe, F. et al. 2016 Revisions to the 2010/2011 fibromyalgia diagnostic criteria. Semin. Arthritis Rheum. 46, 319–329 (2016).

    Article  PubMed  Google Scholar 

  25. Brummett, C. M. et al. Survey criteria for fibromyalgia independently predict increased postoperative opioid consumption after lower-extremity joint arthroplasty: a prospective, observational cohort study. Anesthesiology 119, 1434–1443 (2013).

    Article  CAS  PubMed  Google Scholar 

  26. Janda, A. M. et al. Fibromyalgia survey criteria are associated with increased postoperative opioid consumption in women undergoing hysterectomy. Anesthesiology 122, 1103–1111 (2015).

    Article  CAS  PubMed  Google Scholar 

  27. Kroenke, K., Spitzer, R. L. & Williams, J. B. The PHQ-9: validity of a brief depression severity measure. J. Gen. Intern. Med. 16, 606–613 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Spitzer, R. L., Kroenke, K., Williams, J. B. & Lowe, B. A brief measure for assessing generalized anxiety disorder: the GAD-7. Arch. Intern. Med. 166, 1092–1097 (2006).

    Article  PubMed  Google Scholar 

  29. Bastien, C. H., Vallieres, A. & Morin, C. M. Validation of the insomnia severity index as an outcome measure for insomnia research. Sleep Med. 2, 297–307 (2001).

    Article  PubMed  Google Scholar 

  30. Morin, C. M., Belleville, G., Belanger, L. & Ivers, H. The Insomnia Severity Index: psychometric indicators to detect insomnia cases and evaluate treatment response. Sleep 34, 601–608 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kang, Y., Trewern, L., Jackman, J., McCartney, D. & Soni, A. Chronic pain: definitions and diagnosis. BMJ 381, e076036 (2023).

    Article  PubMed  Google Scholar 

  32. NICE. Chronic Pain (Primary and Secondary) in Over 16s: Assessment of All Chronic Pain and Management of Chronic Primary Pain National Institute for Health and Care Excellence: Guidelines (NICE, 2021).

  33. Mann, E. G., Lefort, S. & Vandenkerkhof, E. G. Self-management interventions for chronic pain. Pain Manag. 3, 211–222 (2013).

    Article  PubMed  Google Scholar 

  34. Macfarlane, G. J. et al. EULAR revised recommendations for the management of fibromyalgia. Ann. Rheum. Dis. 76, 318–328 (2017).

    Article  CAS  PubMed  Google Scholar 

  35. Turk, D. C. & Adams, L. M. Using a biopsychosocial perspective in the treatment of fibromyalgia patients. Pain Manag. 6, 357–369 (2016).

    Article  PubMed  Google Scholar 

  36. Tanaka, Y., Kanazawa, M., Fukudo, S. & Drossman, D. A. Biopsychosocial model of irritable bowel syndrome. J. Neurogastroenterol. Motil. 17, 131–139 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Skelly, A. C. et al. Noninvasive Nonpharmacological Treatment for Chronic Pain: A Systematic Review Update AHRQ Comparative Effectiveness Reviews (Agency for Healthcare Research and Quality, 2020).

  38. Noehren, B. et al. Effect of transcutaneous electrical nerve stimulation on pain, function, and quality of life in fibromyalgia: a double-blind randomized clinical trial. Phys. Ther. 95, 129–140 (2015).

    Article  PubMed  Google Scholar 

  39. Dailey, D. L. et al. Transcutaneous electrical nerve stimulation reduces pain, fatigue and hyperalgesia while restoring central inhibition in primary fibromyalgia. Pain 154, 2554–2562 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Marlow, N. M., Bonilha, H. S. & Short, E. B. Efficacy of transcranial direct current stimulation and repetitive transcranial magnetic stimulation for treating fibromyalgia syndrome: a systematic review. Pain Pract. 13, 131–145 (2013).

    Article  PubMed  Google Scholar 

  41. Chakravarthy, K., Chaudhry, H., Williams, K. & Christo, P. J. Review of the uses of vagal nerve stimulation in chronic pain management. Curr. Pain Headache Rep. 19, 54 (2015).

    Article  PubMed  Google Scholar 

  42. Birkinshaw, H. et al. Antidepressants for pain management in adults with chronic pain: a network meta-analysis. Cochrane Database Syst. Rev. 5, CD014682 (2023).

    PubMed  Google Scholar 

  43. Ferreira, G. E. et al. Efficacy, safety, and tolerability of antidepressants for pain in adults: overview of systematic reviews. BMJ 380, e072415 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Migliorini, F. et al. Pregabalin administration in patients with fibromyalgia: a Bayesian network meta-analysis. Sci. Rep. 12, 12148 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Diatchenko, L., Fillingim, R. B., Smith, S. B. & Maixner, W. The phenotypic and genetic signatures of common musculoskeletal pain conditions. Nat. Rev. Rheumatol. 9, 340–350 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Offenbaecher, M. et al. Possible association of fibromyalgia with a polymorphism in the serotonin transporter gene regulatory region. Arthritis Rheum. 42, 2482–2488 (1999).

    Article  CAS  PubMed  Google Scholar 

  47. Diatchenko, L. et al. Three major haplotypes of the β2 adrenergic receptor define psychological profile, blood pressure, and the risk for development of a common musculoskeletal pain disorder. Am. J. Med. Genet. B Neuropsychiatr. Genet. 141B, 449–462 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Johnston, K. J. A. et al. Genome-wide association study of multisite chronic pain in UK Biobank. PLoS Genet. 15, e1008164 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Crow, M., Denk, F. & McMahon, S. B. Genes and epigenetic processes as prospective pain targets. Genome Med. 5, 12 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mills, S. E. E., Nicolson, K. P. & Smith, B. H. Chronic pain: a review of its epidemiology and associated factors in population-based studies. Br. J. Anaesth. 123, e273–e283 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Melchior, M., Poisbeau, P., Gaumond, I. & Marchand, S. Insights into the mechanisms and the emergence of sex-differences in pain. Neuroscience 338, 63–80 (2016).

    Article  CAS  PubMed  Google Scholar 

  52. Racine, M. et al. A systematic literature review of 10 years of research on sex/gender and experimental pain perception — part 1: are there really differences between women and men? Pain 153, 602–618 (2012).

    Article  PubMed  Google Scholar 

  53. Hankerd, K. et al. Postinjury stimulation triggers a transition to nociplastic pain in mice. Pain 163, 461–473 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Craft, R. M. Modulation of pain by estrogens. Pain 132, S3–S12 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Gulati, M., Dursun, E., Vincent, K. & Watt, F. E. The influence of sex hormones on musculoskeletal pain and osteoarthritis. Lancet Rheumatol. 5, e225–e238 (2023).

    Article  CAS  PubMed  Google Scholar 

  56. Vincent, K. & Tracey, I. Hormones and their interaction with the pain experience. Rev. Pain 2, 20–24 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Schmitz, A. K., Vierhaus, M. & Lohaus, A. Pain tolerance in children and adolescents: sex differences and psychosocial influences on pain threshold and endurance. Eur. J. Pain 17, 124–131 (2013).

    Article  PubMed  Google Scholar 

  58. Iacovides, S., Avidon, I. & Baker, F. C. Does pain vary across the menstrual cycle? A review. Eur. J. Pain 19, 1389–1405 (2015).

    Article  CAS  PubMed  Google Scholar 

  59. Smith, Y. R. et al. Pronociceptive and antinociceptive effects of estradiol through endogenous opioid neurotransmission in women. J. Neurosci. 26, 5777–5785 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Vincent, K. et al. Brain imaging reveals that engagement of descending inhibitory pain pathways in healthy women in a low endogenous estradiol state varies with testosterone. Pain 154, 515–524 (2013).

    Article  CAS  PubMed  Google Scholar 

  61. Lesnak, J. B., Inoue, S., Lima, L., Rasmussen, L. & Sluka, K. A. Testosterone protects against the development of widespread muscle pain in mice. Pain 161, 2898–2908 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Li, R. et al. Prospective association between dysmenorrhea and chronic pain development in community-dwelling women. J. Pain 22, 1084–1096 (2021).

    Article  PubMed  Google Scholar 

  63. Bradford, K. et al. Association between early adverse life events and irritable bowel syndrome. Clin. Gastroenterol. Hepatol. 10, 385–390 (2012).

    Article  PubMed  Google Scholar 

  64. Lovell, R. M. & Ford, A. C. Global prevalence of and risk factors for irritable bowel syndrome: a meta-analysis. Clin. Gastroenterol. Hepatol. 10, 712–721.e4 (2012).

    Article  PubMed  Google Scholar 

  65. Wolfe, F., Ross, K., Anderson, J., Russell, I. J. & Hebert, L. The prevalence and characteristics of fibromyalgia in the general population. Arthritis Rheum. 38, 19–28 (1995).

    Article  CAS  PubMed  Google Scholar 

  66. Wu, A. et al. Global low back pain prevalence and years lived with disability from 1990 to 2017: estimates from the Global Burden of Disease Study 2017. Ann. Transl. Med. 8, 299 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Iversen, J. M., Indredavik, M. S., Evensen, K. A., Romundstad, P. R. & Rygg, M. Self-reported chronic pain in young adults with a low birth weight. Clin. J. Pain 33, 348–355 (2017).

    Article  PubMed  Google Scholar 

  68. Hohmeister, J., Demirakca, S., Zohsel, K., Flor, H. & Hermann, C. Responses to pain in school-aged children with experience in a neonatal intensive care unit: cognitive aspects and maternal influences. Eur. J. Pain 13, 94–101 (2009).

    Article  PubMed  Google Scholar 

  69. Waller, R. et al. The association of early life stressors with pain sensitivity and pain experience at 22 years. Pain 161, 220–229 (2020).

    Article  PubMed  Google Scholar 

  70. Generaal, E. et al. Biological stress systems, adverse life events and the onset of chronic multisite musculoskeletal pain: a 6-year cohort study. Ann. Rheum. Dis. 75, 847–854 (2016).

    Article  CAS  PubMed  Google Scholar 

  71. Schrepf, A. et al. Adverse childhood experiences and symptoms of urologic chronic pelvic pain syndrome: a multidisciplinary approach to the study of chronic pelvic pain research network study. Ann. Behav. Med. 52, 865–877 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Korterink, J., Devanarayana, N. M., Rajindrajith, S., Vlieger, A. & Benninga, M. A. Childhood functional abdominal pain: mechanisms and management. Nat. Rev. Gastroenterol. Hepatol. 12, 159–171 (2015).

    Article  PubMed  Google Scholar 

  73. Felitti, V. J. et al. Relationship of childhood abuse and household dysfunction to many of the leading causes of death in adults. The Adverse Childhood Experiences (ACE) study. Am. J. Prev. Med. 14, 245–258 (1998).

    Article  CAS  PubMed  Google Scholar 

  74. Hughes, K. et al. The effect of multiple adverse childhood experiences on health: a systematic review and meta-analysis. Lancet Public Health 2, e356–e366 (2017).

    Article  PubMed  Google Scholar 

  75. Harris, H. R. et al. Early life abuse and risk of endometriosis. Hum. Reprod. 33, 1657–1668 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Clauw, D. J. et al. Hypothetical model ignores many important pathophysiologic mechanisms in fibromyalgia. Nat. Rev. Rheumatol. 19, 321 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Macfarlane, G. J., Norrie, G., Atherton, K., Power, C. & Jones, G. T. The influence of socioeconomic status on the reporting of regional and widespread musculoskeletal pain: results from the 1958 British Birth Cohort Study. Ann. Rheum. Dis. 68, 1591–1595 (2009).

    Article  CAS  PubMed  Google Scholar 

  78. D’Agnelli, S. et al. Fibromyalgia: genetics and epigenetics insights may provide the basis for the development of diagnostic biomarkers. Mol. Pain 15, 1744806918819944 (2019).

    Article  PubMed  Google Scholar 

  79. Nelson, S. M., Cunningham, N. R. & Kashikar-Zuck, S. A conceptual framework for understanding the role of adverse childhood experiences in pediatric chronic pain. Clin. J. Pain 33, 264–270 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Sluka, K. A., O’Donnell, J. M., Danielson, J. & Rasmussen, L. A. Regular physical activity prevents development of chronic pain and activation of central neurons. J. Appl. Physiol. 114, 725–733 (2013).

    Article  CAS  PubMed  Google Scholar 

  81. Naugle, K. M., Ohlman, T., Naugle, K. E., Riley, Z. A. & Keith, N. R. Physical activity behavior predicts endogenous pain modulation in older adults. Pain 158, 383–390 (2017).

    Article  PubMed  Google Scholar 

  82. Glass, J. M. et al. The effect of brief exercise cessation on pain, fatigue, and mood symptom development in healthy, fit individuals. J. Psychosom. Res. 57, 391–398 (2004).

    Article  PubMed  Google Scholar 

  83. Pan, F. et al. Association between musculoskeletal pain at multiple sites and objectively measured physical activity and work capacity: results from UK Biobank study. J. Sci. Med. Sport 22, 444–449 (2019).

    Article  PubMed  Google Scholar 

  84. D’Onghia, M. et al. Fibromyalgia and obesity: a comprehensive systematic review and meta-analysis. Semin. Arthritis Rheum. 51, 409–424 (2021).

    Article  PubMed  Google Scholar 

  85. Okifuji, A. & Hare, B. D. The association between chronic pain and obesity. J. Pain Res. 8, 399–408 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Stubbs, A. et al. Early relationships of a low-energy diet with symptoms of fibromyalgia. ACR Open Rheumatol. 4, 464–469 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Wearing, S. C., Hennig, E. M., Byrne, N. M., Steele, J. R. & Hills, A. P. The biomechanics of restricted movement in adult obesity. Obes. Rev. 7, 13–24 (2006).

    Article  CAS  PubMed  Google Scholar 

  88. Singh, D., Park, W., Hwang, D. & Levy, M. S. Severe obesity effect on low back biomechanical stress of manual load lifting. Work 51, 337–348 (2015).

    Article  PubMed  Google Scholar 

  89. Park, H. S., Park, J. Y. & Yu, R. Relationship of obesity and visceral adiposity with serum concentrations of CRP, TNF-α and IL-6. Diabetes Res. Clin. Pract. 69, 29–35 (2005).

    Article  CAS  PubMed  Google Scholar 

  90. Kawasaki, Y., Zhang, L., Cheng, J. K. & Ji, R. R. Cytokine mechanisms of central sensitization: distinct and overlapping role of interleukin-1β, interleukin-6, and tumor necrosis factor-α in regulating synaptic and neuronal activity in the superficial spinal cord. J. Neurosci. 28, 5189–5194 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Smuck, M. et al. Does physical activity influence the relationship between low back pain and obesity? Spine J. 14, 209–216 (2014).

    Article  PubMed  Google Scholar 

  92. Irwin, M. R. Sleep and inflammation: partners in sickness and in health. Nat. Rev. Immunol. 19, 702–715 (2019).

    Article  CAS  PubMed  Google Scholar 

  93. Moldofsky, H. Nonrestorative sleep and symptoms after a febrile illness in patients with fibrositis and chronic fatigue syndromes. J. Rheumatol. Suppl. 19, 150–153 (1989).

    CAS  PubMed  Google Scholar 

  94. Moldofsky, H. & Scarisbrick, P. Induction of neurasthenic musculoskeletal pain syndrome by selective sleep stage deprivation. Psychosom. Med. 38, 35–44 (1976).

    Article  CAS  PubMed  Google Scholar 

  95. Ablin, J. N. et al. Effects of sleep restriction and exercise deprivation on somatic symptoms and mood in healthy adults. Clin. Exp. Rheumatol. 31, S53–S59 (2013).

    PubMed  Google Scholar 

  96. Choy, E. H. The role of sleep in pain and fibromyalgia. Nat. Rev. Rheumatol. 11, 513–520 (2015).

    Article  PubMed  Google Scholar 

  97. Meints, S. M. & Edwards, R. R. Evaluating psychosocial contributions to chronic pain outcomes. Prog. Neuropsychopharmacol. Biol. Psychiatry 87, 168–182 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Berna, C. et al. Induction of depressed mood disrupts emotion regulation neurocircuitry and enhances pain unpleasantness. Biol. Psychiatry 67, 1083–1090 (2010).

    Article  PubMed  Google Scholar 

  99. Tanguay-Sabourin, C. et al. A prognostic risk score for development and spread of chronic pain. Nat. Med. 29, 1821–1831 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Lape, E. C., Selzer, F., Collins, J. E., Losina, E. & Katz, J. N. Stability of measures of pain catastrophizing and widespread pain following total knee replacement. Arthritis Care Res. 72, 1096–1103 (2020).

    Article  Google Scholar 

  101. Hassett, A. L. et al. Changes in anxiety and depression are mediated by changes in pain severity in patients undergoing lower-extremity total joint arthroplasty. Reg. Anesth. Pain Med. 43, 14–18 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Schrepf, A. et al. Top down or bottom up? An observational investigation of improvement in fibromyalgia symptoms following hip and knee replacement. Rheumatology 59, 594–602 (2020).

    Article  PubMed  Google Scholar 

  103. Kaplan, C. M. et al. Risk factors for the development of multisite pain in children. Clin. J. Pain 39, 588–594 (2023).

    Article  PubMed  Google Scholar 

  104. Duffield, S. J., Miller, N., Zhao, S. & Goodson, N. J. Concomitant fibromyalgia complicating chronic inflammatory arthritis: a systematic review and meta-analysis. Rheumatology 57, 1453–1460 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Haliloglu, S., Carlioglu, A., Akdeniz, D., Karaaslan, Y. & Kosar, A. Fibromyalgia in patients with other rheumatic diseases: prevalence and relationship with disease activity. Rheumatol. Int. 34, 1275–1280 (2014).

    Article  CAS  PubMed  Google Scholar 

  106. Fairbrass, K. M., Costantino, S. J., Gracie, D. J. & Ford, A. C. Prevalence of irritable bowel syndrome-type symptoms in patients with inflammatory bowel disease in remission: a systematic review and meta-analysis. Lancet Gastroenterol. Hepatol. 5, 1053–1062 (2020).

    Article  PubMed  Google Scholar 

  107. McBeth, J., Harkness, E. F., Silman, A. J. & Macfarlane, G. J. The role of workplace low-level mechanical trauma, posture and environment in the onset of chronic widespread pain. Rheumatology 42, 1486–1494 (2003).

    Article  CAS  PubMed  Google Scholar 

  108. Yavne, Y., Amital, D., Watad, A., Tiosano, S. & Amital, H. A systematic review of precipitating physical and psychological traumatic events in the development of fibromyalgia. Semin. Arthritis Rheum. 48, 121–133 (2018).

    Article  PubMed  Google Scholar 

  109. McLean, S. A. et al. Incidence and predictors of neck and widespread pain after motor vehicle collision among US litigants and nonlitigants. Pain 155, 309–321 (2014).

    Article  PubMed  Google Scholar 

  110. Clauw, D. The health consequences of the first Gulf war. BMJ 327, 1357–1358 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Hu, J. et al. Chronic widespread pain after motor vehicle collision typically occurs through immediate development and nonrecovery: results of an emergency department-based cohort study. Pain 157, 438–444 (2016).

    Article  PubMed  Google Scholar 

  112. Ablin, J. N. et al. A tale of two cities — the effect of low intensity conflict on prevalence and characteristics of musculoskeletal pain and somatic symptoms associated with chronic stress. Clin. Exp. Rheumatol. 28, S15–S21 (2010).

    CAS  PubMed  Google Scholar 

  113. Hickie, I. et al. Post-infective and chronic fatigue syndromes precipitated by viral and non-viral pathogens: prospective cohort study. BMJ 333, 575 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Nalbandian, A. et al. Post-acute COVID-19 syndrome. Nat. Med. 27, 601–615 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Clauw, D. J., Hauser, W., Cohen, S. P. & Fitzcharles, M. A. Considering the potential for an increase in chronic pain after the COVID-19 pandemic. Pain 161, 1694–1697 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Dos Santos Proenca, J., Baad-Hansen, L., do Vale Braido, G. V., Campi, L. B. & de Godoi Goncalves, D. A. Clinical features of chronic primary pain in individuals presenting painful temporomandibular disorder and comorbidities. J. Oral Rehabil. 51, 255–265 (2024).

    Article  PubMed  Google Scholar 

  117. Rehm, S. et al. Pain matters for central sensitization: sensory and psychological parameters in patients with fibromyalgia syndrome. Pain Rep. 6, e901 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Grinberg, K., Granot, M., Lowenstein, L., Abramov, L. & Weissman-Fogel, I. A common pronociceptive pain modulation profile typifying subgroups of chronic pelvic pain syndromes is interrelated with enhanced clinical pain. Pain 158, 1021–1029 (2017).

    Article  PubMed  Google Scholar 

  119. den Bandt, H. L. et al. Pain mechanisms in low back pain: a systematic review with meta-analysis of mechanical quantitative sensory testing outcomes in people with nonspecific low back pain. J. Orthop. Sports Phys. Ther. 49, 698–715 (2019).

    Article  Google Scholar 

  120. Di Antonio, S. et al. Profiling migraine patients according to clinical and psychophysical characteristics: a cluster analysis approach. Pain Med. 24, 1046–1057 (2023).

    Article  PubMed  Google Scholar 

  121. Reed, B. D., Sen, A., Harlow, S. D., Haefner, H. K. & Gracely, R. H. Multimodal vulvar and peripheral sensitivity among women with vulvodynia: a case–control study. J. Low. Genit. Tract Dis. 21, 78–84 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Bourke, J. H. et al. Central sensitisation in chronic fatigue syndrome and fibromyalgia; a case control study. J. Psychosom. Res. 150, 110624 (2021).

    Article  PubMed  Google Scholar 

  123. Simren, M. et al. Cumulative effects of psychologic distress, visceral hypersensitivity, and abnormal transit on patient-reported outcomes in irritable bowel syndrome. Gastroenterology 157, 391–402.e2 (2019).

    Article  PubMed  Google Scholar 

  124. Harte, S. E. et al. Quantitative assessment of nonpelvic pressure pain sensitivity in urologic chronic pelvic pain syndrome: a MAPP Research Network study. Pain 160, 1270–1280 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Sandstrom, A. et al. Distinct aberrations in cerebral pain processing differentiating patients with fibromyalgia from patients with rheumatoid arthritis. Pain 163, 538–547 (2022).

    Article  PubMed  Google Scholar 

  126. Goubert, D., Danneels, L., Graven-Nielsen, T., Descheemaeker, F. & Meeus, M. Differences in pain processing between patients with chronic low back pain, recurrent low back pain, and fibromyalgia. Pain Physician 20, 307–318 (2017).

    PubMed  Google Scholar 

  127. Neville, S. J. et al. Association between the 2011 fibromyalgia survey criteria and multisite pain sensitivity in knee osteoarthritis. Clin. J. Pain 34, 909–917 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Arendt-Nielsen, L. et al. Assessment and manifestation of central sensitisation across different chronic pain conditions. Eur. J. Pain 22, 216–241 (2018).

    Article  CAS  PubMed  Google Scholar 

  129. Lewis, G. N., Rice, D. A. & McNair, P. J. Conditioned pain modulation in populations with chronic pain: a systematic review and meta-analysis. J. Pain 13, 936–944 (2012).

    Article  PubMed  Google Scholar 

  130. King, C. D. et al. Deficiency in endogenous modulation of prolonged heat pain in patients with irritable bowel syndrome and temporomandibular disorder. Pain 143, 172–178 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  131. McPhee, M. E., Vaegter, H. B. & Graven-Nielsen, T. Alterations in pronociceptive and antinociceptive mechanisms in patients with low back pain: a systematic review with meta-analysis. Pain 161, 464–475 (2020).

    Article  PubMed  Google Scholar 

  132. O’Brien, A. T., Deitos, A., Trinanes Pego, Y., Fregni, F. & Carrillo-de-la-Pena, M. T. Defective endogenous pain modulation in fibromyalgia: a meta-analysis of temporal summation and conditioned pain modulation paradigms. J. Pain 19, 819–836 (2018).

    Article  PubMed  Google Scholar 

  133. Correa, J. B., Costa, L. O., de Oliveira, N. T., Sluka, K. A. & Liebano, R. E. Central sensitization and changes in conditioned pain modulation in people with chronic nonspecific low back pain: a case–control study. Exp. Brain Res. 233, 2391–2399 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Potvin, S. & Marchand, S. Pain facilitation and pain inhibition during conditioned pain modulation in fibromyalgia and in healthy controls. Pain 157, 1704–1710 (2016).

    Article  PubMed  Google Scholar 

  135. Baumler, P., Brenske, A., Winkelmann, A., Irnich, D. & Averbeck, B. Strong and aversive cold processing and pain facilitation in fibromyalgia patients relates to augmented thermal grill illusion. Sci. Rep. 13, 15982 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Staud, R., Godfrey, M. M., Riley, J. L. & Fillingim, R. B. Efficiency of pain inhibition and facilitation of fibromyalgia patients is not different from healthy controls: relevance of sensitivity-adjusted test stimuli. Br. J. Pain 17, 182–194 (2023).

    Article  PubMed  Google Scholar 

  137. Arribas-Romano, A. et al. Conditioned pain modulation and temporal summation of pain in patients with traumatic and non-specific neck pain: a systematic review and meta-analysis. J. Pain 25, 312–330 (2024).

    Article  CAS  PubMed  Google Scholar 

  138. Gracely, R. H., Petzke, F., Wolf, J. M. & Clauw, D. J. Functional magnetic resonance imaging evidence of augmented pain processing in fibromyalgia. Arthritis Rheum. 46, 1333–1343 (2002).

    Article  PubMed  Google Scholar 

  139. Giesecke, T. et al. Evidence of augmented central pain processing in idiopathic chronic low back pain. Arthritis Rheum. 50, 613–623 (2004).

    Article  PubMed  Google Scholar 

  140. Hampson, J. P. et al. Augmented central pain processing in vulvodynia. J. Pain 14, 579–589 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Cheng, J. C. et al. Dynamic functional brain connectivity underlying temporal summation of pain in fibromyalgia. Arthritis Rheumatol. 74, 700–710 (2022).

    Article  PubMed  Google Scholar 

  142. Ioachim, G. et al. Altered pain in the brainstem and spinal cord of fibromyalgia patients during the anticipation and experience of experimental pain. Front. Neurol. 13, 862976 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Chen, J. et al. Somatosensory profiles differentiate pain and psychophysiological symptoms among young adults with irritable bowel syndrome: a cluster analysis. Clin. J. Pain 38, 492–501 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Chimenti, R. L., Frey-Law, L. A. & Sluka, K. A. A mechanism-based approach to physical therapist management of pain. Phys. Ther. 98, 302–314 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Desmeules, J. A. et al. Neurophysiologic evidence for a central sensitization in patients with fibromyalgia. Arthritis Rheum. 48, 1420–1429 (2003).

    Article  CAS  PubMed  Google Scholar 

  146. Wilbarger, J. L. & Cook, D. B. Multisensory hypersensitivity in women with fibromyalgia: implications for well being and intervention. Arch. Phys. Med. Rehabil. 92, 653–656 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Wang, D. & Frey-Law, L. A. Multisensory sensitivity differentiates between multiple chronic pain conditions and pain-free individuals. Pain 164, e91–e102 (2023).

    Article  CAS  PubMed  Google Scholar 

  148. Dohrenbusch, R., Sodhi, H., Lamprecht, J. & Genth, E. Fibromyalgia as a disorder of perceptual organization? An analysis of acoustic stimulus processing in patients with widespread pain. Z. Rheumatol. 56, 334–341 (1997).

    Article  CAS  PubMed  Google Scholar 

  149. Carrillo-de-la-Pena, M. T., Vallet, M., Perez, M. I. & Gomez-Perretta, C. Intensity dependence of auditory-evoked cortical potentials in fibromyalgia patients: a test of the generalized hypervigilance hypothesis. J. Pain 7, 480–487 (2006).

    Article  CAS  PubMed  Google Scholar 

  150. Martenson, M. E. et al. A possible neural mechanism for photosensitivity in chronic pain. Pain 157, 868–878 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Geisser, M. E. et al. A psychophysical study of auditory and pressure sensitivity in patients with fibromyalgia and healthy controls. J. Pain 9, 417–422 (2008).

    Article  PubMed  Google Scholar 

  152. Staud, R., Godfrey, M. M. & Robinson, M. E. Fibromyalgia patients are not only hypersensitive to painful stimuli but also to acoustic stimuli. J. Pain 22, 914–925 (2021).

    Article  PubMed  Google Scholar 

  153. Hollins, M. et al. Perceived intensity and unpleasantness of cutaneous and auditory stimuli: an evaluation of the generalized hypervigilance hypothesis. Pain 141, 215–221 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Blomhoff, S., Jacobsen, M. B., Spetalen, S., Dahm, A. & Malt, U. F. Perceptual hyperreactivity to auditory stimuli in patients with irritable bowel syndrome. Scand. J. Gastroenterol. 35, 583–589 (2000).

    Article  CAS  PubMed  Google Scholar 

  155. Kmiecik, M. J., Tu, F. F., Clauw, D. J. & Hellman, K. M. Multimodal hypersensitivity derived from quantitative sensory testing predicts pelvic pain outcome: an observational cohort study. Pain 164, 2070–2083 (2023).

    Article  PubMed  Google Scholar 

  156. Berman, S. M. et al. Enhanced preattentive central nervous system reactivity in irritable bowel syndrome. Am. J. Gastroenterol. 97, 2791–2797 (2002).

    Article  PubMed  Google Scholar 

  157. Lotsch, J., Kraetsch, H. G., Wendler, J. & Hummel, T. Self-ratings of higher olfactory acuity contrast with reduced olfactory test results of fibromyalgia patients. Int. J. Psychophysiol. 86, 182–186 (2012).

    Article  PubMed  Google Scholar 

  158. Harte, S. E. et al. Pharmacologic attenuation of cross-modal sensory augmentation within the chronic pain insula. Pain 157, 1933–1945 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Lopez-Sola, M. et al. Altered functional magnetic resonance imaging responses to nonpainful sensory stimulation in fibromyalgia patients. Arthritis Rheumatol. 66, 3200–3209 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Lopez-Sola, M. et al. Towards a neurophysiological signature for fibromyalgia. Pain 158, 34–47 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Schrepf, A., Harper, D. E., Williams, D. A., Hassett, A. L. & Harte, S. E. Somatic awareness and tender points in a community sample. J. Pain 17, 1281–1290 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Schrepf, A. D. et al. Neurobiology and long-term impact of bladder-filling pain in humans: a Multidisciplinary Approach to the Study of Chronic Pelvic Pain (MAPP) Research Network study. Pain 164, 2343–2351 (2023).

    Article  PubMed  Google Scholar 

  163. Levitt, A. E. et al. Evidence that dry eye represents a chronic overlapping pain condition. Mol. Pain 13, 1744806917729306 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Schrepf, A. et al. Sensory sensitivity and symptom severity represent unique dimensions of chronic pain: a MAPP Research Network study. Pain 159, 2002–2011 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Schrepf, A., Hellman, K. M., Bohnert, A. M., Williams, D. A. & Tu, F. F. Generalized sensory sensitivity is associated with comorbid pain symptoms: a replication study in women with dysmenorrhea. Pain 164, 142–148 (2023).

    Article  PubMed  Google Scholar 

  166. Amital, H. et al. Olfactory impairment in patients with the fibromyalgia syndrome and systemic sclerosis. Immunol. Res. 60, 201–207 (2014).

    Article  CAS  PubMed  Google Scholar 

  167. Blanco, S., Sanroman, L., Perez-Calvo, S., Velasco, L. & Penacoba, C. Olfactory and cognitive functioning in patients with fibromyalgia. Psychol. Health Med. 24, 530–541 (2019).

    Article  PubMed  Google Scholar 

  168. Tracey, I. & Mantyh, P. W. The cerebral signature for pain perception and its modulation. Neuron 55, 377–391 (2007).

    Article  CAS  PubMed  Google Scholar 

  169. Cook, D. B. et al. Functional imaging of pain in patients with primary fibromyalgia. J. Rheumatol. 31, 364–378 (2004).

    PubMed  Google Scholar 

  170. Naliboff, B. D. et al. Cerebral activation in patients with irritable bowel syndrome and control subjects during rectosigmoid stimulation. Psychosom. Med. 63, 365–375 (2001).

    Article  CAS  PubMed  Google Scholar 

  171. Smith, S. M. et al. Correspondence of the brain’s functional architecture during activation and rest. Proc. Natl Acad. Sci. USA 106, 13040–13045 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Raichle, M. E. et al. A default mode of brain function. Proc. Natl Acad. Sci. USA 98, 676–682 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Menon, V. & Uddin, L. Q. Saliency, switching, attention and control: a network model of insula function. Brain Struct. Funct. 214, 655–667 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Fox, M. D. et al. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc. Natl Acad. Sci. USA 102, 9673–9678 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Napadow, V. et al. Intrinsic brain connectivity in fibromyalgia is associated with chronic pain intensity. Arthritis Rheum. 62, 2545–2555 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Ichesco, E. et al. Altered resting state connectivity of the insular cortex in individuals with fibromyalgia. J. Pain 15, 815–826.e1 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Ellingsen, D. M. et al. A picture is worth a thousand words: linking fibromyalgia pain widespreadness from digital pain drawings with pain catastrophizing and brain cross-network connectivity. Pain 162, 1352–1363 (2021).

    Article  CAS  PubMed  Google Scholar 

  178. Sunol, M. et al. Reduced cortico-cortical resting-state connectivity in sensory systems related to bodily pain in juvenile fibromyalgia. Arthritis Rheumatol. 76, 293–303 (2024).

    Article  PubMed  Google Scholar 

  179. Kutch, J. J. et al. Brain signature and functional impact of centralized pain: a multidisciplinary approach to the study of chronic pelvic pain (MAPP) network study. Pain 158, 1979–1991 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Wang, C. et al. Reproducible microstructural changes in the brain associated with the presence and severity of urologic chronic pelvic pain syndrome (UCPPS): a 3-year longitudinal diffusion tensor imaging study from the MAPP network. J. Pain 24, 627–642 (2023).

    Article  PubMed  Google Scholar 

  181. Kim, J. et al. Somatotopically specific primary somatosensory connectivity to salience and default mode networks encodes clinical pain. Pain 160, 1594–1605 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Loggia, M. L. et al. Default mode network connectivity encodes clinical pain: an arterial spin labeling study. Pain 154, 24–33 (2013).

    Article  PubMed  Google Scholar 

  183. Krimmel, S. R. et al. Three dimensions of association link migraine symptoms and functional connectivity. J. Neurosci. 42, 6156–6166 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Coppola, G. et al. Resting state connectivity between default mode network and insula encodes acute migraine headache. Cephalalgia 38, 846–854 (2018).

    Article  PubMed  Google Scholar 

  185. Chou, K. H. et al. Bout-associated intrinsic functional network changes in cluster headache: a longitudinal resting-state functional MRI study. Cephalalgia 37, 1152–1163 (2017).

    Article  PubMed  Google Scholar 

  186. Baliki, M. N., Mansour, A. R., Baria, A. T. & Apkarian, A. V. Functional reorganization of the default mode network across chronic pain conditions. PLoS ONE 9, e106133 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Napadow, V., Kim, J., Clauw, D. J. & Harris, R. E. Decreased intrinsic brain connectivity is associated with reduced clinical pain in fibromyalgia. Arthritis Rheum. 64, 2398–2403 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  188. Harris, R. E. et al. Pregabalin rectifies aberrant brain chemistry, connectivity, and functional response in chronic pain patients. Anesthesiology 119, 1453–1464 (2013).

    Article  CAS  PubMed  Google Scholar 

  189. Basu, N. et al. Neurobiologic features of fibromyalgia are also present among rheumatoid arthritis patients. Arthritis Rheumatol. 70, 1000–1007 (2018).

    Article  PubMed  Google Scholar 

  190. Hemington, K. S., Wu, Q., Kucyi, A., Inman, R. D. & Davis, K. D. Abnormal cross-network functional connectivity in chronic pain and its association with clinical symptoms. Brain Struct. Funct. 221, 4203–4219 (2016).

    Article  CAS  PubMed  Google Scholar 

  191. Rogachov, A. et al. Abnormal low-frequency oscillations reflect trait-like pain ratings in chronic pain patients revealed through a machine learning approach. J. Neurosci. 38, 7293–7302 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Harris, R. E. et al. Elevated insular glutamate in fibromyalgia is associated with experimental pain. Arthritis Rheum. 60, 3146–3152 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Pyke, T. L., Osmotherly, P. G. & Baines, S. Measuring glutamate levels in the brains of fibromyalgia patients and a potential role for glutamate in the pathophysiology of fibromyalgia symptoms: a systematic review. Clin. J. Pain 33, 944–954 (2017).

    Article  PubMed  Google Scholar 

  194. Lee, J. et al. 3D magnetic resonance spectroscopic imaging reveals links between brain metabolites and multidimensional pain features in fibromyalgia. Eur. J. Pain 25, 2050–2064 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Peek, A. L. et al. Brain GABA and glutamate levels across pain conditions: a systematic literature review and meta-analysis of 1H-MRS studies using the MRS-Q quality assessment tool. Neuroimage 210, 116532 (2020).

    Article  CAS  PubMed  Google Scholar 

  196. Foerster, B. R. et al. Reduced insular γ-aminobutyric acid in fibromyalgia. Arthritis Rheum. 64, 579–583 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Harper, D. E. et al. Relationships between brain metabolite levels, functional connectivity, and negative mood in urologic chronic pelvic pain syndrome patients compared to controls: a MAPP Research Network study. Neuroimage Clin. 17, 570–578 (2018).

    Article  PubMed  Google Scholar 

  198. Peek, A. L. et al. Increased GABA+ in people with migraine, headache, and pain conditions — a potential marker of pain. J. Pain 22, 1631–1645 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Watson, C. J. Insular balance of glutamatergic and GABAergic signaling modulates pain processing. Pain 157, 2194–2207 (2016).

    Article  CAS  PubMed  Google Scholar 

  200. Mawla, I. et al. Large-scale momentary brain co-activation patterns are associated with hyperalgesia and mediate focal neurochemistry and cross-network functional connectivity in fibromyalgia. Pain 164, 2737–2748 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  201. Kim, J. et al. The somatosensory link in fibromyalgia: functional connectivity of the primary somatosensory cortex is altered by sustained pain and is associated with clinical/autonomic dysfunction. Arthritis Rheumatol. 67, 1395–1405 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  202. Gordon, E. M. et al. A somato-cognitive action network alternates with effector regions in motor cortex. Nature 617, 351–359 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Hegarty, A. K., Yani, M. S., Albishi, A., Michener, L. A. & Kutch, J. J. Salience network functional connectivity is spatially heterogeneous across sensorimotor cortex in healthy humans. Neuroimage 221, 117177 (2020).

    Article  PubMed  Google Scholar 

  204. Kong, J. et al. S1 is associated with chronic low back pain: a functional and structural MRI study. Mol. Pain 9, 43 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  205. Maeda, Y. et al. Functional deficits in carpal tunnel syndrome reflect reorganization of primary somatosensory cortex. Brain 137, 1741–1752 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  206. Bosma, R. L. et al. fMRI of spinal and supra-spinal correlates of temporal pain summation in fibromyalgia patients. Hum. Brain Mapp. 37, 1349–1360 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  207. Jensen, K. B. et al. Evidence of dysfunctional pain inhibition in fibromyalgia reflected in rACC during provoked pain. Pain 144, 95–100 (2009).

    Article  PubMed  Google Scholar 

  208. Jensen, K. B. et al. Patients with fibromyalgia display less functional connectivity in the brain’s pain inhibitory network. Mol. Pain 8, 32 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  209. Kim, D. J., Lim, M., Kim, J. S. & Chung, C. K. Structural and functional thalamocortical connectivity study in female fibromyalgia. Sci. Rep. 11, 23323 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Mosch, B., Hagena, V., Herpertz, S., Ruttorf, M. & Diers, M. Neural correlates of control over pain in fibromyalgia patients. Neuroimage Clin. 37, 103355 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  211. Cifre, I. et al. Disrupted functional connectivity of the pain network in fibromyalgia. Psychosom. Med. 74, 55–62 (2012).

    Article  PubMed  Google Scholar 

  212. Pujol, J. et al. The contribution of sensory system functional connectivity reduction to clinical pain in fibromyalgia. Pain 155, 1492–1503 (2014).

    Article  PubMed  Google Scholar 

  213. Coulombe, M. A. et al. Lower functional connectivity of the periaqueductal gray is related to negative affect and clinical manifestations of fibromyalgia. Front. Neuroanat. 11, 47 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  214. Li, Z. et al. Altered periaqueductal gray resting state functional connectivity in migraine and the modulation effect of treatment. Sci. Rep. 6, 20298 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Wei, S. Y. et al. Changes in functional connectivity of pain modulatory systems in women with primary dysmenorrhea. Pain 157, 92–102 (2016).

    Article  PubMed  Google Scholar 

  216. Zhuo, M. & Gebhart, G. F. Biphasic modulation of spinal nociceptive transmission from the medullary raphe nuclei in the rat. J. Neurophysiol. 78, 746–758 (1997).

    Article  CAS  PubMed  Google Scholar 

  217. Harper, D. E. et al. Resting functional connectivity of the periaqueductal gray is associated with normal inhibition and pathological facilitation in conditioned pain modulation. J. Pain 19, 635.e1–635.e15 (2018).

    Article  PubMed  Google Scholar 

  218. Gwilym, S. E. et al. Psychophysical and functional imaging evidence supporting the presence of central sensitization in a cohort of osteoarthritis patients. Arthritis Rheum. 61, 1226–1234 (2009).

    Article  PubMed  Google Scholar 

  219. Russell, I. J., Vaeroy, H., Javors, M. & Nyberg, F. Cerebrospinal fluid biogenic amine metabolites in fibromyalgia/fibrositis syndrome and rheumatoid arthritis. Arthritis Rheum. 35, 550–556 (1992).

    Article  CAS  PubMed  Google Scholar 

  220. Baraniuk, J. N., Whalen, G., Cunningham, J. & Clauw, D. J. Cerebrospinal fluid levels of opioid peptides in fibromyalgia and chronic low back pain. BMC Musculoskelet. Disord. 5, 48 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  221. Harris, R. E. et al. Decreased central μ-opioid receptor availability in fibromyalgia. J. Neurosci. 27, 10000–10006 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Clauw, D. Hijacking the endogenous opioid system to treat pain: who thought it would be so complicated? Pain 158, 2283–2284 (2017).

    Article  PubMed  Google Scholar 

  223. Kim, P. S. & Fishman, M. A. Low-dose naltrexone for chronic pain: update and systemic review. Curr. Pain. Headache Rep. 24, 64 (2020).

    Article  PubMed  Google Scholar 

  224. Metyas, S., Chen, C. L., Yeter, K., Solyman, J. & Arkfeld, D. G. Low dose naltrexone in the treatment of fibromyalgia. Curr. Rheumatol. Rev. 14, 177–180 (2018).

    Article  CAS  PubMed  Google Scholar 

  225. Wood, P. B. et al. Fibromyalgia patients show an abnormal dopamine response to pain. Eur. J. Neurosci. 25, 3576–3582 (2007).

    Article  PubMed  Google Scholar 

  226. Martikainen, I. K. et al. Chronic back pain is associated with alterations in dopamine neurotransmission in the ventral striatum. J. Neurosci. 35, 9957–9965 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Kim, M. et al. Striatal hypofunction as a neural correlate of mood alterations in chronic pain patients. Neuroimage 211, 116656 (2020).

    Article  PubMed  Google Scholar 

  228. Martucci, K. T., Borg, N., MacNiven, K. H., Knutson, B. & Mackey, S. C. Altered prefrontal correlates of monetary anticipation and outcome in chronic pain. Pain 159, 1494–1507 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  229. Baker, A. K. et al. Altered reward processing and sex differences in chronic pain. Front. Neurosci. 16, 889849 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  230. Ikeda, E., Li, T., Kobinata, H., Zhang, S. & Kurata, J. Anterior insular volume decrease is associated with dysfunction of the reward system in patients with chronic pain. Eur. J. Pain 22, 1170–1179 (2018).

    Article  CAS  PubMed  Google Scholar 

  231. Baliki, M. N. et al. Corticostriatal functional connectivity predicts transition to chronic back pain. Nat. Neurosci. 15, 1117–1119 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Vachon-Presseau, E. et al. Corticolimbic anatomical characteristics predetermine risk for chronic pain. Brain 139, 1958–1970 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  233. Makary, M. M. et al. Loss of nucleus accumbens low-frequency fluctuations is a signature of chronic pain. Proc. Natl Acad. Sci. USA 117, 10015–10023 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Loffler, M. et al. Corticostriatal circuits in the transition to chronic back pain: the predictive role of reward learning. Cell Rep. Med. 3, 100677 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  235. Wanigasekera, V. et al. Baseline reward circuitry activity and trait reward responsiveness predict expression of opioid analgesia in healthy subjects. Proc. Natl Acad. Sci. USA 109, 17705–17710 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Tracey, I. A vulnerability to chronic pain and its interrelationship with resistance to analgesia. Brain 139, 1869–1872 (2016).

    Article  PubMed  Google Scholar 

  237. Uceyler, N., Hauser, W. & Sommer, C. Systematic review with meta-analysis: cytokines in fibromyalgia syndrome. BMC Musculoskelet. Disord. 12, 245 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  238. O’Mahony, L. F., Srivastava, A., Mehta, P. & Ciurtin, C. Is fibromyalgia associated with a unique cytokine profile? A systematic review and meta-analysis. Rheumatology 60, 2602–2614 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  239. Andres-Rodriguez, L. et al. Peripheral immune aberrations in fibromyalgia: a systematic review, meta-analysis and meta-regression. Brain Behav. Immun. 87, 881–889 (2020).

    Article  CAS  PubMed  Google Scholar 

  240. Segura‐Jiménez, V. et al. Differences in sedentary time and physical activity between female patients with fibromyalgia and healthy controls: the al‐Ándalus project. Arthritis Rheumatol. 67, 3047–3057 (2015).

    Article  PubMed  Google Scholar 

  241. Clark, S., Tindall, E. & Bennett, R. M. A double blind crossover trial of prednisone versus placebo in the treatment of fibrositis. J. Rheumatol. 12, 980–983 (1985).

    CAS  PubMed  Google Scholar 

  242. Kadetoff, D., Lampa, J., Westman, M., Andersson, M. & Kosek, E. Evidence of central inflammation in fibromyalgia-increased cerebrospinal fluid interleukin-8 levels. J. Neuroimmunol. 242, 33–38 (2012).

    Article  CAS  PubMed  Google Scholar 

  243. Kosek, E. et al. Evidence of different mediators of central inflammation in dysfunctional and inflammatory pain — interleukin-8 in fibromyalgia and interleukin-1β in rheumatoid arthritis. J. Neuroimmunol. 280, 49–55 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Backryd, E., Tanum, L., Lind, A. L., Larsson, A. & Gordh, T. Evidence of both systemic inflammation and neuroinflammation in fibromyalgia patients, as assessed by a multiplex protein panel applied to the cerebrospinal fluid and to plasma. J. Pain Res. 10, 515–525 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  245. Lacagnina, M. J., Watkins, L. R. & Grace, P. M. Toll-like receptors and their role in persistent pain. Pharmacol. Ther. 184, 145–158 (2018).

    Article  CAS  PubMed  Google Scholar 

  246. Schrepf, A. et al. Toll-like receptor 4 and comorbid pain in interstitial cystitis/bladder pain syndrome: a multidisciplinary approach to the study of chronic pelvic pain research network study. Brain Behav. Immun. 49, 66–74 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Schrepf, A. et al. Stimulated whole-blood cytokine/chemokine responses are associated with interstitial cystitis/bladder pain syndrome phenotypes and features of nociplastic pain: a Multidisciplinary Approach to the Study of Chronic Pelvic Pain Research Network study. Pain 164, 1148–1157 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Schrepf, A. et al. Inflammation and inflammatory control in interstitial cystitis/bladder pain syndrome: associations with painful symptoms. Pain 155, 1755–1761 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Nicotra, L., Loram, L. C., Watkins, L. R. & Hutchinson, M. R. Toll-like receptors in chronic pain. Exp. Neurol. 234, 316–329 (2012).

    Article  CAS  PubMed  Google Scholar 

  250. McKim, D. B. et al. Microglial recruitment of IL-1β-producing monocytes to brain endothelium causes stress-induced anxiety. Mol. Psychiatry 23, 1421–1431 (2018).

    Article  CAS  PubMed  Google Scholar 

  251. Wohleb, E. S., McKim, D. B., Sheridan, J. F. & Godbout, J. P. Monocyte trafficking to the brain with stress and inflammation: a novel axis of immune-to-brain communication that influences mood and behavior. Front. Neurosci. 8, 447 (2014).

    PubMed  Google Scholar 

  252. Dantzer, R. & Kelley, K. W. Twenty years of research on cytokine-induced sickness behavior. Brain Behav. Immun. 21, 153–160 (2007).

    Article  CAS  PubMed  Google Scholar 

  253. Dantzer, R., O’Connor, J. C., Freund, G. G., Johnson, R. W. & Kelley, K. W. From inflammation to sickness and depression: when the immune system subjugates the brain. Nat. Rev. Neurosci. 9, 46–56 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Kaplan, C. M. et al. Association of inflammation with pronociceptive brain connections in rheumatoid arthritis patients with concomitant fibromyalgia. Arthritis Rheumatol. 72, 41–46 (2020).

    Article  CAS  PubMed  Google Scholar 

  255. Schrepf, A. et al. A multi-modal MRI study of the central response to inflammation in rheumatoid arthritis. Nat. Commun. 9, 2243 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  256. Dantzer, R. Cytokine-induced sickness behavior: mechanisms and implications. Ann. N. Y. Acad. Sci. 933, 222–234 (2001).

    Article  CAS  PubMed  Google Scholar 

  257. Mailhot, B. et al. Neuronal interleukin-1 receptors mediate pain in chronic inflammatory diseases. J. Exp. Med. 217, e20191430 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Albrecht, D. S. et al. Brain glial activation in fibromyalgia — a multi-site positron emission tomography investigation. Brain Behav. Immun. 75, 72–83 (2019).

    Article  PubMed  Google Scholar 

  259. Mueller, C. et al. Evidence of neuroinflammation in fibromyalgia syndrome: a [18F] DPA-714 positron emission tomography study. Pain 64, 2285–2295 (2022).

    Google Scholar 

  260. Younger, J., Noor, N., McCue, R. & Mackey, S. Low-dose naltrexone for the treatment of fibromyalgia: findings of a small, randomized, double-blind, placebo-controlled, counterbalanced, crossover trial assessing daily pain levels. Arthritis Rheum. 65, 529–538 (2013).

    Article  CAS  PubMed  Google Scholar 

  261. Schrepf, A. et al. Endogenous opioidergic dysregulation of pain in fibromyalgia: a PET and fMRI study. Pain 157, 2217–2225 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. De Picker, L. J. et al. TSPO PET brain inflammation imaging: a transdiagnostic systematic review and meta-analysis of 156 case–control studies. Brain Behav. Immun. 113, 415–431 (2023).

    Article  PubMed  Google Scholar 

  263. Afari, N. et al. Psychological trauma and functional somatic syndromes: a systematic review and meta-analysis. Psychosom. Med. 76, 2–11 (2014).

    Article  PubMed  Google Scholar 

  264. Lutgendorf, S. K. et al. Early and recent exposure to adversity, TLR-4 stimulated inflammation, and diurnal cortisol in women with interstitial cystitis/bladder pain syndrome: a MAPP Research Network study. Brain Behav. Immun. 111, 116–123 (2023).

    Article  CAS  PubMed  Google Scholar 

  265. Bick, J. et al. Childhood adversity and DNA methylation of genes involved in the hypothalamus–pituitary–adrenal axis and immune system: whole-genome and candidate-gene associations. Dev. Psychopathol. 24, 1417–1425 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  266. Jones, G. T., Power, C. & Macfarlane, G. J. Adverse events in childhood and chronic widespread pain in adult life: results from the 1958 British Birth Cohort Study. Pain 143, 92–96 (2009).

    Article  PubMed  Google Scholar 

  267. DeSantana, J. M., da Cruz, K. M. & Sluka, K. A. Animal models of fibromyalgia. Arthritis Res. Ther. 15, 222 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  268. Gold, M. S. & Gebhart, G. in Bonica’s Pain Management (eds. Fishman, S., Ballantyne, J. C. & Rathmell, J. P.) 25–34 (Lippincott Williams & Wilkins, 2010).

  269. Goebel, A. et al. Passive transfer of fibromyalgia symptoms from patients to mice. J. Clin. Invest. 131, e144201 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Caxaria, S. et al. Neutrophils infiltrate sensory ganglia and mediate chronic widespread pain in fibromyalgia. Proc. Natl Acad. Sci. USA 120, e2211631120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Clauw, D., Sarzi-Puttini, P., Pellegrino, G. & Shoenfeld, Y. Is fibromyalgia an autoimmune disorder? Autoimmun. Rev. 23, 103424 (2024).

    Article  PubMed  Google Scholar 

  272. Krock, E. et al. Fibromyalgia patients with elevated levels of anti-satellite glia cell immunoglobulin G antibodies present with more severe symptoms. Pain 164, 1828–1840 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Galosi, E., Truini, A. & Di Stefano, G. A systematic review and meta-analysis of the prevalence of small fibre impairment in patients with fibromyalgia. Diagnostics 12, 1135 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  274. Uceyler, N. et al. Small fibre pathology in patients with fibromyalgia syndrome. Brain 136, 1857–1867 (2013).

    Article  PubMed  Google Scholar 

  275. Caro, X. J. & Winter, E. F. Evidence of abnormal epidermal nerve fiber density in fibromyalgia: clinical and immunologic implications. Arthritis Rheumatol. 66, 1945–1954 (2014).

    Article  PubMed  Google Scholar 

  276. Evdokimov, D. et al. Reduction of skin innervation is associated with a severe fibromyalgia phenotype. Ann. Neurol. 86, 504–516 (2019).

    Article  CAS  PubMed  Google Scholar 

  277. Giannoccaro, M. P., Donadio, V., Incensi, A., Avoni, P. & Liguori, R. Small nerve fiber involvement in patients referred for fibromyalgia. Muscle Nerve 49, 757–759 (2014).

    Article  PubMed  Google Scholar 

  278. Kosmidis, M. L. et al. Reduction of intraepidermal nerve fiber density (IENFD) in the skin biopsies of patients with fibromyalgia: a controlled study. J. Neurol. Sci. 347, 143–147 (2014).

    Article  PubMed  Google Scholar 

  279. Marshall, A. et al. Small fibre pathology, small fibre symptoms and pain in fibromyalgia syndrome. Sci. Rep. 14, 3947 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  280. Serra, J. et al. Hyperexcitable C nociceptors in fibromyalgia. Ann. Neurol. 75, 196–208 (2014).

    Article  CAS  PubMed  Google Scholar 

  281. Kim, S. H., Kim, D. H., Oh, D. H. & Clauw, D. J. Characteristic electron microscopic findings in the skin of patients with fibromyalgia: preliminary study. Clin. Rheumatol. 27, 219–223 (2008).

    Article  PubMed  Google Scholar 

  282. Harte, S. E. et al. Reduced intraepidermal nerve fiber density after a sustained increase in insular glutamate: a proof-of-concept study examining the pathogenesis of small fiber pathology in fibromyalgia. Pain Rep. 2, e590 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  283. Thomas, S. et al. Abnormal intraepidermal nerve fiber density in disease: a scoping review. Front. Neurol. 14, 1161077 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  284. Clauw, D. J. What is the meaning of “small fiber neuropathy” in fibromyalgia? Pain 156, 2115–2116 (2015).

    Article  PubMed  Google Scholar 

  285. Henn, A. T. et al. Structural imaging studies of patients with chronic pain: an anatomical likelihood estimate meta-analysis. Pain 164, e10–e24 (2023).

    Article  PubMed  Google Scholar 

  286. Harte, S. E., Harris, R. E. & Clauw, D. J. The neurobiology of central sensitization. J. Appl. Biobehav. Res. 23, e12137 (2018).

    Article  Google Scholar 

  287. Woolf, C. J. Evidence for a central component of post-injury pain hypersensitivity. Nature 306, 686–688 (1983).

    Article  CAS  PubMed  Google Scholar 

  288. Suarez-Roca, H. et al. Role of μ-opioid and NMDA receptors in the development and maintenance of repeated swim stress-induced thermal hyperalgesia. Behav. Brain Res. 167, 205–211 (2006).

    Article  CAS  PubMed  Google Scholar 

  289. Pierce, A. N., Ryals, J. M., Wang, R. & Christianson, J. A. Vaginal hypersensitivity and hypothalamic–pituitary–adrenal axis dysfunction as a result of neonatal maternal separation in female mice. Neuroscience 263, 216–230 (2014).

    Article  CAS  PubMed  Google Scholar 

  290. Eller, O. C. et al. An omega-3-rich anti-inflammatory diet improved widespread allodynia and worsened metabolic outcomes in adult mice exposed to neonatal maternal separation. Neuroscience 468, 53–67 (2021).

    Article  CAS  PubMed  Google Scholar 

  291. Aranda-Villalobos, P. et al. Normalization of widespread pressure pain hypersensitivity after total hip replacement in patients with hip osteoarthritis is associated with clinical and functional improvements. Arthritis Rheum. 65, 1262–1270 (2013).

    Article  PubMed  Google Scholar 

  292. Kosek, E. & Ordeberg, G. Lack of pressure pain modulation by heterotopic noxious conditioning stimulation in patients with painful osteoarthritis before, but not following, surgical pain relief. Pain 88, 69–78 (2000).

    Article  PubMed  Google Scholar 

  293. Dutta, D. et al. Heritability of the fibromyalgia phenotype varies by age. Arthritis Rheumatol. 72, 815–823 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  294. Sluka, K. A. et al. Predicting chronic postsurgical pain: current evidence and a novel program to develop predictive biomarker signatures. Pain 164, 1912–1926 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  295. Denk, F., McMahon, S. B. & Tracey, I. Pain vulnerability: a neurobiological perspective. Nat. Neurosci. 17, 192–200 (2014).

    Article  CAS  PubMed  Google Scholar 

  296. Kaplan, C. M. et al. Neurobiological antecedents of multisite pain in children. Pain 163, e596–e603 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  297. Seretny, M. et al. Neuroimaging reveals a potential brain-based pre-existing mechanism that confers vulnerability to development of chronic painful chemotherapy-induced peripheral neuropathy. Br. J. Anaesth. 130, 83–93 (2023).

    Article  PubMed  Google Scholar 

  298. Rodriguez-Raecke, R., Niemeier, A., Ihle, K., Ruether, W. & May, A. Brain gray matter decrease in chronic pain is the consequence and not the cause of pain. J. Neurosci. 29, 13746–13750 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Chelsea M. Kaplan.

Ethics declarations

Competing interests

D.J.C. has consulted for Aptinyx, Daiichi Sankyo, Intec, Lundbeck, Pfizer, Regeneron, Samumed, Teva, Theravance, Tonix, Virios and Zynerba; has received research funding from Aptinyx, Cerephex and Pfizer; and has been involved in litigation testifying against opioid manufacturers in the States of Oklahoma and Florida. S.E.H. has consulted for Aptinyx, Dana-Farber Cancer Institute, Indiana University Indianapolis, Memorial Sloan Kettering Cancer Center, University of North Carolina-Chapel Hill and Wayne State University; has received research funding from Aptinyx and Arbor Medical Innovations, LLC; and holds the following patents: EP2482716B1, US9307906B2, WO2011041683A2, CA2775775C, AU2010300372B2, US11701092B2, USD1010145S1, US20230077464A1 (pending), CN115720508A (pending), CA3177295A1 (pending) and EP4142583A1 (pending). All other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Neurology thanks Jo Nijs, Mary-Ann Fitzcharles and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

International Association for the Study of Pain (IASP): https://www.iasp-pain.org/resources/terminology/#:~:Text=Pain%20that%20arises%20from%20altered,somatosensory%20system%20causing%20the%20pain.&Text=A%20stimulus%20that%20is%20damaging%20or%20threatens%20damage%20to%20normal%20tissues

Patient-Reported Outcomes Measurement Information System: https://www.healthmeasures.net/explore-measurement-systems/promis

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaplan, C.M., Kelleher, E., Irani, A. et al. Deciphering nociplastic pain: clinical features, risk factors and potential mechanisms. Nat Rev Neurol (2024). https://doi.org/10.1038/s41582-024-00966-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41582-024-00966-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing