Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Rechargeable carbonaceous geosupercapacitor for sustainable superoxide generation and pollutant abatement

Abstract

Reactive oxygen species enable efficient oxidative removal or detoxification of pollutants in water but traditional approaches for reactive oxygen species generation are chemically demanding, which limits their practical applications. Herein, we demonstrate a sustainable and chemical-free superoxide (O2•−) generation strategy by integrating rechargeable carbonaceous supercapacitors with redox-moiety-based O2 activation, which is distinct from production using traditional electrocatalysis. Highly porous carbonaceous geosupercapacitors were developed by pyrolysing cattle bones consisting of macromolecules interlinked with abundant minerals, followed by acid etching. Porous geosupercapacitors exhibit high capacitances and excellent electron-transfer efficiencies for O2 activation as a result of their abundant carbon defects and redox-active quinone moieties, thereby effectively transferring electrons to O2 to form O2•− radicals. Electrochemical analysis shows that the electron-transfer rate of the carbonaceous geosupercapacitor is orders of magnitude higher than that of traditional biochar, notably promoting electron transfer and O2 activation. This geosupercapacitor possesses excellent electron rechargeability and a stable capacitance, enabling sustainable O2•− production off-line. The utility of this green O2•− producing system is confirmed in different scenarios, such as stable performance in complex matrices, treating diverse redox-active pollutants and development of a portable chargeable device.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Preparation and characterization of CGs.
Fig. 2: Superoxide radical identification and its generation mechanism.
Fig. 3: The performance of CGs for oxidizing As(III).
Fig. 4: Electrochemical analysis of CGs.
Fig. 5: Cyclic performance of the rechargeable CG.
Fig. 6: Proof of concept of the rechargeable CG for pollutant abatements.

Similar content being viewed by others

Data availability

All data are presented in the article and its Supplementary Information. Source data are provided with this paper.

References

  1. Wei, Y. et al. Fast and efficient removal of As(III) from water by CuFe2O4 with peroxymonosulfate: effects of oxidation and adsorption. Water Res. 150, 182–190 (2019).

    Article  CAS  PubMed  Google Scholar 

  2. Bello, M. M., Abdul Raman, A. A. & Asghar, A. A review on approaches for addressing the limitations of Fenton oxidation for recalcitrant wastewater treatment. Process. Saf. Environ. Prot. 126, 119–140 (2019).

    Article  CAS  Google Scholar 

  3. Rahim Pouran, S., Abdul Raman, A. A. & Wan Daud, W. M. A. Review on the application of modified iron oxides as heterogeneous catalysts in Fenton reactions. J. Clean. Prod. 64, 24–35 (2014).

    Article  CAS  Google Scholar 

  4. Winterbourn, C. C. Biological chemistry of superoxide radicals. ChemTexts 6, 7 (2020).

    Article  CAS  Google Scholar 

  5. Bielski, B. H., Cabelli, D. E., Arudi, R. L. & Ross, A. B. Reactivity of HO2/O−2 radicals in aqueous solution. J. Phys. Chem. Ref. Data 14, 1041–1100 (1985).

    Article  CAS  Google Scholar 

  6. Khiem, T. C. et al. Electron transfer-mediated enhancement of superoxide radical generation in Fenton-like process: key role of oxygen vacancy-regulated local electron density of cobalt sites. Appl. Catalysis B 343, 123490 (2024).

    Article  CAS  Google Scholar 

  7. Hayyan, M., Hashim, M. A. & AlNashef, I. M. Superoxide ion: generation and chemical implications. Chem. Rev. 116, 3029–3085 (2016).

    Article  CAS  PubMed  Google Scholar 

  8. Li, H. et al. Persulfate adsorption and activation by carbon structure defects provided new insights into ofloxacin degradation by biochar. Sci. Total Environ. 806, 150968 (2022).

    Article  CAS  PubMed  Google Scholar 

  9. Qin, Y. et al. Persistent free radicals in carbon-based materials on transformation of refractory organic contaminants (ROCs) in water: a critical review. Water Res. 137, 130–143 (2018).

    Article  CAS  PubMed  Google Scholar 

  10. Ruan, X. et al. Formation, characteristics and applications of environmentally persistent free radicals in biochars: a review. Bioresour. Technol. 281, 457–468 (2019).

    Article  CAS  PubMed  Google Scholar 

  11. Wang, R.-Z. et al. Recent advances in biochar-based catalysts: properties, applications and mechanisms for pollution remediation. Chem. Eng. J. 371, 380–403 (2019).

    Article  CAS  Google Scholar 

  12. Lian, F. & Xing, B. Black carbon (biochar) in water/soil environments: molecular structure, sorption, stability and potential risk. Environ. Sci. Technol. 51, 13517–13532 (2017).

    Article  CAS  PubMed  Google Scholar 

  13. Zhong, D. et al. pH dependence of arsenic oxidation by rice-husk-derived biochar: roles of redox-active moieties. Environ. Sci. Technol. 53, 9034–9044 (2019).

    Article  CAS  PubMed  Google Scholar 

  14. Yuan, J., Wen, Y., Dionysiou, D. D., Sharma, V. K. & Ma, X. Biochar as a novel carbon-negative electron source and mediator: electron exchange capacity (EEC) and environmentally persistent free radicals (EPFRs): a review. Chem. Eng. J. 429, 132313 (2022).

    Article  CAS  Google Scholar 

  15. Klüpfel, L., Keiluweit, M., Kleber, M. & Sander, M. Redox properties of plant biomass-derived black carbon (biochar). Environ. Sci. Technol. 48, 5601–5611 (2014).

    Article  PubMed  Google Scholar 

  16. Sun, T. et al. Rapid electron transfer by the carbon matrix in natural pyrogenic carbon. Nat. Commun. 8, 14873 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Huang, Z. et al. Effects of anion carriers on capacitance and self‐discharge behaviors of zinc ion capacitors. Angew. Chem. 133, 1024–1034 (2021).

    Article  Google Scholar 

  18. Lu, S. Y. et al. Chemically exfoliating biomass into a graphene‐like porous active carbon with rational pore structure, good conductivity and large surface area for high‐performance supercapacitors. Adv. Energy Mater. 8, 1702545 (2018).

    Article  Google Scholar 

  19. Zhou, J. et al. Biomass-derived carbon materials for high-performance supercapacitors: current status and perspective. Electrochem. Energy Rev. 4, 219–248 (2021).

    Article  CAS  Google Scholar 

  20. Zhu, J. & Mu, S. Defect engineering in carbon‐based electrocatalysts: insight into intrinsic carbon defects. Adv. Funct. Mater. 30, 2001097 (2020).

    Article  CAS  Google Scholar 

  21. Singh, R., Singh, S., Parihar, P., Singh, V. P. & Prasad, S. M. Arsenic contamination, consequences and remediation techniques: a review. Ecotoxicol. Environ. Saf. 112, 247–270 (2015).

    Article  CAS  PubMed  Google Scholar 

  22. Zhu, S. et al. Catalytic removal of aqueous contaminants on N-doped graphitic biochars: inherent roles of adsorption and nonradical mechanisms. Environ. Sci. Technol. 52, 8649–8658 (2018).

    Article  CAS  PubMed  Google Scholar 

  23. Leng, L. et al. An overview on engineering the surface area and porosity of biochar. Sci. Total Environ. 763, 144204 (2021).

    Article  CAS  PubMed  Google Scholar 

  24. Chen, D. et al. Molten NaCl-induced MOF-derived carbon-polyhedron decorated carbon-nanosheet with high defects and high N-doping for boosting the removal of carbamazepine from water. Environ. Sci. Nano 7, 1205–1213 (2020).

    Article  CAS  Google Scholar 

  25. Wang, Z. et al. Roles of N-vacancies over porous g-C3N4 microtubes during photocatalytic NOx removal. ACS Appl. Mater. Interfaces 11, 10651–10662 (2019).

    Article  CAS  PubMed  Google Scholar 

  26. Estrade-Szwarckopf, H. XPS photoemission in carbonaceous materials: a ‘defect’ peak beside the graphitic asymmetric peak. Carbon 42, 1713–1721 (2004).

    Article  CAS  Google Scholar 

  27. Zhu, J. et al. Effects of intrinsic pentagon defects on electrochemical reactivity of carbon nanomaterials. Angew. Chem. Int. Ed. 58, 3859–3864 (2019).

    Article  CAS  Google Scholar 

  28. Tao, L. et al. Bridging the surface charge and catalytic activity of a defective carbon electrocatalyst. Angew. Chem. 131, 1031–1036 (2019).

    Article  Google Scholar 

  29. Sun, Y., Xu, D. & Wang, S. Self-assembly of biomass derivatives into multiple heteroatom-doped 3D-interconnected porous carbon for advanced supercapacitors. Carbon 199, 258–267 (2022).

    Article  CAS  Google Scholar 

  30. Liu, K., Li, F., Zhao, X., Wang, G. & Fang, L. The overlooked role of carbonaceous supports in enhancing arsenite oxidation and removal by nZVI: surface area versus electrochemical property. Chem. Eng. J. 406, 126851 (2021).

    Article  CAS  Google Scholar 

  31. Liu, K., Li, F., Pang, Y., Fang, L. & Hocking, R. Electron shuttle-induced oxidative transformation of arsenite on the surface of goethite and underlying mechanisms. J. Hazard. Mater. 425, 127780 (2022).

    Article  CAS  PubMed  Google Scholar 

  32. Ma, J., Zhou, H., Yan, S. & Song, W. Kinetics studies and mechanistic considerations on the reactions of superoxide radical ions with dissolved organic matter. Water Res. 149, 56–64 (2019).

    Article  CAS  PubMed  Google Scholar 

  33. Tian, R. et al. Electrochemical behaviors of biochar materials during pollutant removal in wastewater: a review. Chem. Eng. J. 425, 130585 (2021).

    Article  CAS  Google Scholar 

  34. Dong, X., Ma, L. Q., Gress, J., Harris, W. & Li, Y. Enhanced Cr(VI) reduction and As(III) oxidation in ice phase: important role of dissolved organic matter from biochar. J. Hazard. Mater. 267, 62–70 (2014).

    Article  CAS  PubMed  Google Scholar 

  35. Meenakshi, S., Jancy Sophia, S. & Pandian, K. High surface graphene nanoflakes as sensitive sensing platform for simultaneous electrochemical detection of metronidazole and chloramphenicol. Mater. Sci. Eng. C 90, 407–419 (2018).

    Article  CAS  Google Scholar 

  36. Sun, T. et al. Simultaneous quantification of electron transfer by carbon matrices and functional groups in pyrogenic carbon. Environ. Sci. Technol. 52, 8538–8547 (2018).

    Article  CAS  PubMed  Google Scholar 

  37. Xin, D., Saha, N., Reza, M. T., Hudson, J. & Chiu, P. C. Pyrolysis creates electron storage capacity of black carbon (biochar) from lignocellulosic biomass. ACS Sustain. Chem. Eng. 9, 6821–6831 (2021).

    Article  CAS  Google Scholar 

  38. Kim, D.-h, Bokare, A. D., Koo, M. S. & Choi, W. Heterogeneous catalytic oxidation of As (III) on nonferrous metal oxides in the presence of H2O2. Environ. Sci. Technol. 49, 3506–3513 (2015).

    Article  CAS  PubMed  Google Scholar 

  39. Klüpfel, L., Piepenbrock, A., Kappler, A. & Sander, M. Humic substances as fully regenerable electron acceptors in recurrently anoxic environments. Nat. Geosci. 7, 195 (2014).

    Article  Google Scholar 

  40. Kanematsu, M., Young, T. M., Fukushi, K., Green, P. G. & Darby, J. L. Arsenic(III, V) adsorption on a goethite-based adsorbent in the presence of major co-existing ions: modeling competitive adsorption consistent with spectroscopic and molecular evidence. Geochim. Cosmochim. Acta 106, 404–428 (2013).

    Article  CAS  Google Scholar 

  41. Yu, G.-H. & Kuzyakov, Y. Fenton chemistry and reactive oxygen species in soil: abiotic mechanisms of biotic processes, controls and consequences for carbon and nutrient cycling. Earth Sci. Rev. 214, 103525 (2021).

    Article  CAS  Google Scholar 

  42. Wang, Y., Ning, X., Liang, J., Wang, A. & Qu, J. Enhancing microbial superoxide generation and conversion to hydroxyl radicals for enhanced bioremediation using iron-binding ligands. J. Environ. Sci. 147, 597–606 (2025).

    Article  Google Scholar 

  43. Nosaka, Y. & Nosaka, A. Y. Generation and detection of reactive oxygen species in photocatalysis. Chem. Rev. 117, 11302–11336 (2017).

    Article  CAS  PubMed  Google Scholar 

  44. Zhao, M. et al. Dual isolated bimetal single-atom catalysts for tumor ROS cycle and parallel catalytic therapy. Nano Today 44, 101493 (2022).

    Article  CAS  Google Scholar 

  45. Liu, K. et al. A highly porous animal bone-derived char with a superiority of promoting nZVI for Cr(VI) sequestration in agricultural soils. J. Environ. Sci. 104, 27–39 (2021).

    Article  CAS  Google Scholar 

  46. Ding, W. et al. Co-oxidation of As(III) and Fe(II) by oxygen through complexation between As(III) and Fe(II)/Fe(III) species. Water Res. 143, 599–607 (2018).

    Article  CAS  PubMed  Google Scholar 

  47. Hong, Z., Li, F., Borch, T., Shi, Q. & Fang, L. Incorporation of Cu into goethite stimulates oxygen activation by surface-bound Fe (II) for enhanced As (III) oxidative transformation. Environ. Sci. Technol. 57, 2162–2174 (2023).

    Article  CAS  PubMed  Google Scholar 

  48. Wang, X. et al. Ascorbate guided conversion of hydrogen peroxide to hydroxyl radical on goethite. Appl. Catalysis B 282, 119558 (2021).

    Article  CAS  Google Scholar 

  49. Zhao, G. et al. Tide-triggered production of reactive oxygen species in coastal soils. Environ. Sci. Technol. 56, 11888–11896 (2022).

    Article  CAS  PubMed  Google Scholar 

  50. Fu, H. et al. Photochemistry of dissolved black carbon released from biochar: reactive oxygen species generation and phototransformation. Environ. Sci. Technol. 50, 1218–1226 (2016).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (42321005 (F.L.); 42077301 (L.F.); 42030702 (F.L.); 42207040 (K.L.)), China Postdoctoral Science Foundation (2022M710835 (K.L.)), Guangdong Foundation for talents in scientific and technological innovation (2021TQ060193 (L.F.)), Guangdong Academy of Sciences’ Project (2019GDASYL-0102006 (L.F.)), GDAS Project of Science and Technology Development (2023GDASZH-2023010103 (K.L.); 2022GDASZH-2022010201-04 (L.F.)), Foreign Expert Program (G2023030041L (T.B.)).

Author information

Authors and Affiliations

Authors

Contributions

L.F. conceived and designed this project and wrote the original manuscript. K.L. performed experiments, materials preparation, data analysis and wrote the original manuscript. L.X. contributed to the conduct of the experiments. F.W. contributed to discussions of the results. T.B. and F.L. supervised the entire project and revised the manuscript.

Corresponding authors

Correspondence to Thomas Borch or Fangbai Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Water thanks Baoshan Xing and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Text 1–4, Figs. 1–16 and Tables 1–4.

Source data

Source Data Fig. 1

Raw data; XRD, BET, Raman, EPR, XPS, CV, EAC/EDC and IR.

Source Data Fig. 2

Radical identification data.

Source Data Fig. 3

The As(III) oxidation by CGs data.

Source Data Fig. 4

Electrochemical analysis of CGs data.

Source Data Fig. 5

Cyclic performance of CGs data.

Source Data Fig. 6

Proof of concept data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, L., Liu, K., Xu, L. et al. Rechargeable carbonaceous geosupercapacitor for sustainable superoxide generation and pollutant abatement. Nat Water 2, 485–495 (2024). https://doi.org/10.1038/s44221-024-00241-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44221-024-00241-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing