Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Near-complete destruction of PFAS in aqueous film-forming foam by integrated photo-electrochemical processes

Abstract

Per- and polyfluoroalkyl substances (PFAS) are highly recalcitrant pollutants in the water environment worldwide. Aqueous film-forming foam (AFFF) used for firefighting is a major source of PFAS pollution. However, complete defluorination (that is, cleaving all C–F bonds into F ions) of PFAS by non-thermal technology is rare. The destruction of the PFAS mixture in the complex organic matrix of AFFF is even more challenging. Here we designed and demonstrated an ultraviolet/sulfite–electrochemical oxidation (UV/S–EO) process. The tandem UV/S–EO leverages the complementary advantages of UV/S and EO modules in the PFAS transformation mechanism and the engineering process design (for example, foaming control, chemical dosage and energy consumption). At ambient temperature and pressure, the UV/S–EO realized near-complete defluorination and mineralization of most PFAS and organics in AFFF (50–5,000 times diluted, containing up to 200 mg l−1 organic fluorine and 3,764 mg l−1 organic carbon). This work highlights the integration of molecular-level insight and engineering design towards solving the major challenges of AFFF water pollution.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: EO destruction and defluorination of individual PFAS.
Fig. 2: UV/S–EO treatment of selected PFAS.
Fig. 3: Evolution of detected transformation products during the UV/S–EO treatment of 25 μM PFOA.
Fig. 4: UV/S–EO treatment of AFFF.
Fig. 5: Advantages and engineering considerations of the UV/S–EO process.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available within the paper and its Supplementary Information. Source data for all graphs are provided in this paper.

References

  1. Evich, M. G. et al. Per- and polyfluoroalkyl substances in the environment. Science 375, eabg9065 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Moody, C. A. & Field, J. A. Perfluorinated surfactants and the environmental implications of their use in fire-fighting foams. Environ. Sci. Technol. 34, 3864–3870 (2000).

    Article  CAS  Google Scholar 

  3. Awad, E. et al. Long-term environmental fate of perfluorinated compounds after accidental release at Toronto airport. Environ. Sci. Technol. 45, 8081–8089 (2011).

    Article  CAS  PubMed  Google Scholar 

  4. Hu, X. C. et al. Detection of poly- and perfluoroalkyl substances (PFASs) in US drinking water linked to industrial sites, military fire training areas, and wastewater treatment plants. Environ. Sci. Technol. Lett. 3, 344–350 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mejia-Avendaño, S. et al. Novel fluoroalkylated surfactants in soils following firefighting foam deployment during the Lac-Megantic railway accident. Environ. Sci. Technol. 51, 8313–8323 (2017).

    Article  PubMed  Google Scholar 

  6. Liu, M., Munoz, G., Vo Duy, S., Sauvé, S. & Liu, J. Per- and polyfluoroalkyl substances in contaminated soil and groundwater at airports: a Canadian case study. Environ. Sci. Technol. 56, 885–895 (2021).

    Article  PubMed  Google Scholar 

  7. Cornelsen, M., Weber, R. & Panglisch, S. Minimizing the environmental impact of PFAS by using specialized coagulants for the treatment of PFAS polluted waters and for the decontamination of firefighting equipment. Emerg. Contam. 7, 63–76 (2021).

    Article  CAS  Google Scholar 

  8. Lang, J. R. et al. Characterization of per- and polyfluoroalkyl substances on fire suppression system piping and optimization of removal methods. Chemosphere 308, 136254 (2022).

    Article  CAS  PubMed  Google Scholar 

  9. Krause, M. J. et al. Supercritical water oxidation as an innovative technology for PFAS destruction. J. Environ. Eng. 148, 05021006 (2022).

    Article  CAS  Google Scholar 

  10. Hao, S. et al. Hydrothermal alkaline treatment for destruction of per- and polyfluoroalkyl substances in aqueous film-forming foam. Environ. Sci. Technol. 55, 3283–3295 (2021).

    Article  CAS  PubMed  Google Scholar 

  11. Pinkard, B. R. Aqueous film-forming foam treatment under alkaline hydrothermal conditions. J. Environ. Eng. 148, 05021007 (2022).

    Article  CAS  Google Scholar 

  12. Place, B. J. & Field, J. A. Identification of novel fluorochemicals in aqueous film-forming foams used by the US military. Environ. Sci. Technol. 46, 7120–7127 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. D’Agostino, L. A. & Mabury, S. A. Identification of novel fluorinated surfactants in aqueous film forming foams and commercial surfactant concentrates. Environ. Sci. Technol. 48, 121–129 (2014).

    Article  PubMed  Google Scholar 

  14. Barzen-Hanson, K. A. et al. Discovery of 40 classes of per- and polyfluoroalkyl substances in historical aqueous film-forming foams (AFFFs) and AFFF-impacted groundwater. Environ. Sci. Technol. 51, 2047–2057 (2017).

    Article  CAS  PubMed  Google Scholar 

  15. Park, H. et al. Reductive defluorination of aqueous perfluorinated alkyl surfactants: effects of ionic headgroup and chain length. J. Phys. Chem. A 113, 690–696 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. Campbell, T. Y., Vecitis, C. D., Mader, B. T. & Hoffmann, M. R. Perfluorinated surfactant chain-length effects on sonochemical kinetics. J. Phys. Chem. A 113, 9834–9842 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. Bentel, M. J. et al. Defluorination of per- and polyfluoroalkyl substances (PFASs) with hydrated electrons: structural dependence and implications to PFAS remediation and management. Environ. Sci. Technol. 53, 3718–3728 (2019).

    Article  CAS  PubMed  Google Scholar 

  18. Liu, Z. et al. Accelerated degradation of perfluorosulfonates and perfluorocarboxylates by UV/sulfite + iodide: reaction mechanisms and system efficiencies. Environ. Sci. Technol. 56, 3699–3709 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Singh, R. K. et al. Removal of poly- and per-fluorinated compounds from ion exchange regenerant still bottom samples in a plasma reactor. Environ. Sci. Technol. 54, 13973–13980 (2020).

    Article  CAS  PubMed  Google Scholar 

  20. Li, R., Isowamwen, O. F., Ross, K. C., Holsen, T. M. & Thagard, S. M. PFAS–CTAB complexation and its role on the removal of PFAS from a lab-prepared water and a reverse osmosis reject water using a plasma reactor. Environ. Sci. Technol. 57, 12901–12910 (2023).

    Article  CAS  PubMed  Google Scholar 

  21. Zhuo, Q. et al. Degradation of perfluorinated compounds on a boron-doped diamond electrode. Electrochim. Acta 77, 17–22 (2012).

    Article  CAS  Google Scholar 

  22. Schaefer, C. E. et al. Electrochemical transformations of perfluoroalkyl acid (PFAA) precursors and PFAAs in groundwater impacted with aqueous film forming foams. Environ. Sci. Technol. 52, 10689–10697 (2018).

    Article  CAS  PubMed  Google Scholar 

  23. Liang, S. et al. Field demonstration of coupling ion-exchange resin with electrochemical oxidation for enhanced treatment of per- and polyfluoroalkyl substances (PFAS) in groundwater. Chem. Eng. J. Adv. 9, 100216 (2022).

    Article  CAS  Google Scholar 

  24. Tenorio, R. et al. Destruction of per- and polyfluoroalkyl substances (PFASs) in aqueous film-forming foam (AFFF) with UV–sulfite photoreductive treatment. Environ. Sci. Technol. 54, 6957–6967 (2020).

    Article  CAS  PubMed  Google Scholar 

  25. Gomez-Ruiz, B. et al. Efficient electrochemical degradation of poly- and perfluoroalkyl substances (PFASs) from the effluents of an industrial wastewater treatment plant. Chem. Eng. J. 322, 196–204 (2017).

    Article  CAS  Google Scholar 

  26. Schaefer, C. E. et al. Electrochemical treatment of perfluorooctanoic acid and perfluorooctane sulfonate: insights into mechanisms and application to groundwater treatment. Chem. Eng. J. 317, 424–432 (2017).

    Article  CAS  Google Scholar 

  27. Macpherson, J. V. A practical guide to using boron doped diamond in electrochemical research. Phys. Chem. Chem. Phys. 17, 2935–2949 (2015).

    Article  CAS  PubMed  Google Scholar 

  28. Radjenovic, J., Duinslaeger, N., Avval, S. S. & Chaplin, B. P. Facing the challenge of poly- and perfluoroalkyl substances in water: is electrochemical oxidation the answer? Environ. Sci. Technol. 54, 14815–14829 (2020).

    Article  CAS  PubMed  Google Scholar 

  29. Yang, Y. Recent advances in the electrochemical oxidation water treatment: spotlight on byproduct control. Front. Environ. Sci. Eng. 14, 85 (2020).

    Article  CAS  Google Scholar 

  30. Shin, Y.-U. et al. Electrochemical oxidation of organics in sulfate solutions on boron-doped diamond electrode: multiple pathways for sulfate radical generation. Appl. Catal. B 254, 156–165 (2019).

    Article  CAS  Google Scholar 

  31. Yang, S., Fernando, S., Holsen, T. M. & Yang, Y. Inhibition of perchlorate formation during the electrochemical oxidation of perfluoroalkyl acid in groundwater. Environ. Sci. Technol. Lett. 6, 775–780 (2019).

    Article  CAS  Google Scholar 

  32. Liu, Y. et al. Enhanced perfluorooctanoic acid degradation by electrochemical activation of sulfate solution on B/N codoped diamond. Environ. Sci. Technol. 53, 5195–5201 (2019).

    Article  CAS  PubMed  Google Scholar 

  33. Farhat, A., Keller, J., Tait, S. & Radjenovic, J. Removal of persistent organic contaminants by electrochemically activated sulfate. Environ. Sci. Technol. 49, 14326–14333 (2015).

    Article  CAS  PubMed  Google Scholar 

  34. Houtz, E. F. & Sedlak, D. L. Oxidative conversion as a means of detecting precursors to perfluoroalkyl acids in urban runoff. Environ. Sci. Technol. 46, 9342–9349 (2012).

    Article  CAS  PubMed  Google Scholar 

  35. Lutze, H. V., Brekenfeld, J., Naumov, S., von Sonntag, C. & Schmidt, T. C. Degradation of perfluorinated compounds by sulfate radicals—new mechanistic aspects and economical considerations. Water Res. 129, 509–519 (2018).

    Article  CAS  PubMed  Google Scholar 

  36. Liu, Z. et al. Near-quantitative defluorination of perfluorinated and fluorotelomer carboxylates and sulfonates with integrated oxidation and reduction. Environ. Sci. Technol. 55, 7052–7062 (2021).

    Article  CAS  PubMed  Google Scholar 

  37. Niu, J., Li, Y., Shang, E., Xu, Z. & Liu, J. Electrochemical oxidation of perfluorinated compounds in water. Chemosphere 146, 526–538 (2016).

    Article  CAS  PubMed  Google Scholar 

  38. Shende, T., Andaluri, G. & Suri, R. Chain-length dependent ultrasonic degradation of perfluoroalkyl substances. Chem. Eng. J. Adv. 15, 100509 (2023).

    Article  CAS  Google Scholar 

  39. Isowamwen, O., Li, R., Holsen, T. & Thagard, S. M. Plasma-assisted degradation of a short-chain perfluoroalkyl substance (PFAS): perfluorobutane sulfonate (PFBS). J. Hazard. Mater. 456, 131691 (2023).

    Article  CAS  PubMed  Google Scholar 

  40. Gao, J. et al. Photochemical degradation pathways and near-complete defluorination of chlorinated polyfluoroalkyl substances. Nat. Water 1, 381–390 (2023).

    Article  Google Scholar 

  41. Houtz, E. F., Higgins, C. P., Field, J. A. & Sedlak, D. L. Persistence of perfluoroalkyl acid precursors in AFFF-impacted groundwater and soil. Environ. Sci. Technol. 47, 8187–8195 (2013).

    Article  CAS  PubMed  Google Scholar 

  42. Singh, R. K. et al. Rapid removal of poly- and perfluorinated compounds from investigation-derived waste (IDW) in a pilot-scale plasma reactor. Environ. Sci. Technol. 53, 11375–11382 (2019).

    Article  CAS  PubMed  Google Scholar 

  43. Dalvi, V. H. & Rossky, P. J. Molecular origins of fluorocarbon hydrophobicity. Proc. Natl Acad. Sci. USA 107, 13603–13607 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Crittenden, J. C., Trussell R. R., Hand, D. W., Howe, K. J. & Tchobanoglous, G. MWH’s Water Treatment: Principles and Design (John Wiley & Sons, 2012).

  45. Shields, E. P. et al. Pilot-scale thermal destruction of per- and polyfluoroalkyl substances in a legacy aqueous film forming foam. ACS ES&T Eng. 3, 1308–1317 (2023).

    Article  CAS  Google Scholar 

  46. Maga, D., Aryan, V. & Bruzzano, S. Environmental assessment of various end-of-life pathways for treating per- and polyfluoroalkyl substances in spent fire-extinguishing waters. Environ. Toxicol. Chem. 40, 947–957 (2021).

    Article  CAS  PubMed  Google Scholar 

  47. Gao, J. et al. Defluorination of omega-hydroperfluorocarboxylates (ω-HPFCAs): distinct reactivities from perfluoro and fluorotelomeric carboxylates. Environ. Sci. Technol. 55, 14146–14155 (2021).

    Article  CAS  PubMed  Google Scholar 

  48. Bentel, M. J. et al. Degradation of perfluoroalkyl ether carboxylic acids with hydrated electrons: structure–reactivity relationships and environmental implications. Environ. Sci. Technol. 54, 2489–2499 (2020).

    Article  CAS  PubMed  Google Scholar 

  49. Gao, J., Xie, S., Liu, F. & Liu, J. Preparation and synergy of supported Ru0 and Pd0 for rapid chlorate reduction at pH 7. Environ. Sci. Technol. 57, 3962–3970 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ren, C., Bi, E. Y., Gao, J. & Liu, J. Molybdenum-catalyzed perchlorate reduction: robustness, challenges, and solutions. ACS ES&T Eng. 2, 181–188 (2022).

    Article  CAS  Google Scholar 

  51. Liu, J. & Gao, J. Catalytic reduction of water pollutants: knowledge gaps, lessons learned, and new opportunities. Front. Environ. Sci. Eng. 17, 26 (2022).

    Article  Google Scholar 

  52. Yang, N. et al. Solvent-free nonthermal destruction of PFAS chemicals and PFAS in sediment by piezoelectric ball milling. Environ. Sci. Technol. Lett. 10, 198–203 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Li, X. et al. Efficient reductive dechlorination of monochloroacetic acid by sulfite/UV process. Environ. Sci. Technol. 46, 7342–7349 (2012).

    Article  CAS  PubMed  Google Scholar 

  54. Bentel, M. J. et al. Enhanced degradation of perfluorocarboxylic acids (PFCAs) by UV/sulfite treatment: reaction mechanisms and system efficiencies at pH 12. Environ. Sci. Technol. Lett. 7, 351–357 (2020).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support was provided by the Strategic Environmental Research and Development Program (ER22-3184 for Y.G., Z.L., N.Y., J.L. and Y.Y.) and the National Science Foundation (CBET-2120452 for S.Y., L.E.Q.-C. and Y.Y.). We thank S. Fernando and T. Holsen at Clarkson University for providing the Ansulite AFFF sample and the assistance in non-targeted PFAS analyses.

Author information

Authors and Affiliations

Authors

Contributions

Y.G. conducted PFAS degradation experiments, analysed the data and drafted the paper. Z.L. conducted PFAS degradation and NMR analysis. N.Y., S.Y. and L.E.Q.-C. assisted in the liquid chromatography high-resolution tandem mass spectrometry analysis. J.L. and Y.Y. designed and supervised the research and revised the paper.

Corresponding authors

Correspondence to Jinyong Liu or Yang Yang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Water thanks Shilai Hao and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Supplementary Texts 1–3, Tables 1–5 and Figs. 1–21.

Source data

Source Data Fig. 1

EO treatment of individual PFAS.

Source Data Fig. 2

UV/S–EO degradation and defluorination of individual PFAS.

Source Data Fig. 3

Transformation of PFOA during UV/S–EO treatment.

Source Data Fig. 4

UV/S–EO treatment of AFFF.

Source Data Fig. 5

Variation of TOC and foaming potentials during UV/S–EO treatment; energy consumption evaluation.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guan, Y., Liu, Z., Yang, N. et al. Near-complete destruction of PFAS in aqueous film-forming foam by integrated photo-electrochemical processes. Nat Water (2024). https://doi.org/10.1038/s44221-024-00232-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s44221-024-00232-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing